Source code for numpy.core._internal

"""
A place for internal code

Some things are more easily handled Python.

"""
from __future__ import division, absolute_import, print_function

import re
import sys
import platform

from numpy.compat import unicode
from .multiarray import dtype, array, ndarray
try:
    import ctypes
except ImportError:
    ctypes = None

IS_PYPY = platform.python_implementation() == 'PyPy'

if (sys.byteorder == 'little'):
    _nbo = b'<'
else:
    _nbo = b'>'

def _makenames_list(adict, align):
    allfields = []
    fnames = list(adict.keys())
    for fname in fnames:
        obj = adict[fname]
        n = len(obj)
        if not isinstance(obj, tuple) or n not in [2, 3]:
            raise ValueError("entry not a 2- or 3- tuple")
        if (n > 2) and (obj[2] == fname):
            continue
        num = int(obj[1])
        if (num < 0):
            raise ValueError("invalid offset.")
        format = dtype(obj[0], align=align)
        if (n > 2):
            title = obj[2]
        else:
            title = None
        allfields.append((fname, format, num, title))
    # sort by offsets
    allfields.sort(key=lambda x: x[2])
    names = [x[0] for x in allfields]
    formats = [x[1] for x in allfields]
    offsets = [x[2] for x in allfields]
    titles = [x[3] for x in allfields]

    return names, formats, offsets, titles

# Called in PyArray_DescrConverter function when
#  a dictionary without "names" and "formats"
#  fields is used as a data-type descriptor.
def _usefields(adict, align):
    try:
        names = adict[-1]
    except KeyError:
        names = None
    if names is None:
        names, formats, offsets, titles = _makenames_list(adict, align)
    else:
        formats = []
        offsets = []
        titles = []
        for name in names:
            res = adict[name]
            formats.append(res[0])
            offsets.append(res[1])
            if (len(res) > 2):
                titles.append(res[2])
            else:
                titles.append(None)

    return dtype({"names": names,
                  "formats": formats,
                  "offsets": offsets,
                  "titles": titles}, align)


# construct an array_protocol descriptor list
#  from the fields attribute of a descriptor
# This calls itself recursively but should eventually hit
#  a descriptor that has no fields and then return
#  a simple typestring

def _array_descr(descriptor):
    fields = descriptor.fields
    if fields is None:
        subdtype = descriptor.subdtype
        if subdtype is None:
            if descriptor.metadata is None:
                return descriptor.str
            else:
                new = descriptor.metadata.copy()
                if new:
                    return (descriptor.str, new)
                else:
                    return descriptor.str
        else:
            return (_array_descr(subdtype[0]), subdtype[1])

    names = descriptor.names
    ordered_fields = [fields[x] + (x,) for x in names]
    result = []
    offset = 0
    for field in ordered_fields:
        if field[1] > offset:
            num = field[1] - offset
            result.append(('', '|V%d' % num))
            offset += num
        elif field[1] < offset:
            raise ValueError(
                "dtype.descr is not defined for types with overlapping or "
                "out-of-order fields")
        if len(field) > 3:
            name = (field[2], field[3])
        else:
            name = field[2]
        if field[0].subdtype:
            tup = (name, _array_descr(field[0].subdtype[0]),
                   field[0].subdtype[1])
        else:
            tup = (name, _array_descr(field[0]))
        offset += field[0].itemsize
        result.append(tup)

    if descriptor.itemsize > offset:
        num = descriptor.itemsize - offset
        result.append(('', '|V%d' % num))

    return result

# Build a new array from the information in a pickle.
# Note that the name numpy.core._internal._reconstruct is embedded in
# pickles of ndarrays made with NumPy before release 1.0
# so don't remove the name here, or you'll
# break backward compatibility.
def _reconstruct(subtype, shape, dtype):
    return ndarray.__new__(subtype, shape, dtype)


# format_re was originally from numarray by J. Todd Miller

format_re = re.compile(br'(?P<order1>[<>|=]?)'
                       br'(?P<repeats> *[(]?[ ,0-9]*[)]? *)'
                       br'(?P<order2>[<>|=]?)'
                       br'(?P<dtype>[A-Za-z0-9.?]*(?:\[[a-zA-Z0-9,.]+\])?)')
sep_re = re.compile(br'\s*,\s*')
space_re = re.compile(br'\s+$')

# astr is a string (perhaps comma separated)

_convorder = {b'=': _nbo}

def _commastring(astr):
    startindex = 0
    result = []
    while startindex < len(astr):
        mo = format_re.match(astr, pos=startindex)
        try:
            (order1, repeats, order2, dtype) = mo.groups()
        except (TypeError, AttributeError):
            raise ValueError('format number %d of "%s" is not recognized' %
                                            (len(result)+1, astr))
        startindex = mo.end()
        # Separator or ending padding
        if startindex < len(astr):
            if space_re.match(astr, pos=startindex):
                startindex = len(astr)
            else:
                mo = sep_re.match(astr, pos=startindex)
                if not mo:
                    raise ValueError(
                        'format number %d of "%s" is not recognized' %
                        (len(result)+1, astr))
                startindex = mo.end()

        if order2 == b'':
            order = order1
        elif order1 == b'':
            order = order2
        else:
            order1 = _convorder.get(order1, order1)
            order2 = _convorder.get(order2, order2)
            if (order1 != order2):
                raise ValueError(
                    'inconsistent byte-order specification %s and %s' %
                    (order1, order2))
            order = order1

        if order in [b'|', b'=', _nbo]:
            order = b''
        dtype = order + dtype
        if (repeats == b''):
            newitem = dtype
        else:
            newitem = (dtype, eval(repeats))
        result.append(newitem)

    return result

class dummy_ctype(object):
    def __init__(self, cls):
        self._cls = cls
    def __mul__(self, other):
        return self
    def __call__(self, *other):
        return self._cls(other)
    def __eq__(self, other):
        return self._cls == other._cls
    def __ne__(self, other):
        return self._cls != other._cls

def _getintp_ctype():
    val = _getintp_ctype.cache
    if val is not None:
        return val
    if ctypes is None:
        import numpy as np
        val = dummy_ctype(np.intp)
    else:
        char = dtype('p').char
        if (char == 'i'):
            val = ctypes.c_int
        elif char == 'l':
            val = ctypes.c_long
        elif char == 'q':
            val = ctypes.c_longlong
        else:
            val = ctypes.c_long
    _getintp_ctype.cache = val
    return val
_getintp_ctype.cache = None

# Used for .ctypes attribute of ndarray

class _missing_ctypes(object):
    def cast(self, num, obj):
        return num.value

    class c_void_p(object):
        def __init__(self, ptr):
            self.value = ptr


class _unsafe_first_element_pointer(object):
    """
    Helper to allow viewing an array as a ctypes pointer to the first element

    This avoids:
      * dealing with strides
      * `.view` rejecting object-containing arrays
      * `memoryview` not supporting overlapping fields
    """
    def __init__(self, arr):
        self.base = arr

    @property
    def __array_interface__(self):
        i = dict(
            shape=(),
            typestr='|V0',
            data=(self.base.__array_interface__['data'][0], False),
            strides=(),
            version=3,
        )
        return i


def _get_void_ptr(arr):
    """
    Get a `ctypes.c_void_p` to arr.data, that keeps a reference to the array
    """
    import numpy as np
    # convert to a 0d array that has a data pointer referrign to the start
    # of arr. This holds a reference to arr.
    simple_arr = np.asarray(_unsafe_first_element_pointer(arr))

    # create a `char[0]` using the same memory.
    c_arr = (ctypes.c_char * 0).from_buffer(simple_arr)

    # finally cast to void*
    return ctypes.cast(ctypes.pointer(c_arr), ctypes.c_void_p)


class _ctypes(object):
    def __init__(self, array, ptr=None):
        self._arr = array

        if ctypes:
            self._ctypes = ctypes
            # get a void pointer to the buffer, which keeps the array alive
            self._data = _get_void_ptr(array)
            assert self._data.value == ptr
        else:
            # fake a pointer-like object that holds onto the reference
            self._ctypes = _missing_ctypes()
            self._data = self._ctypes.c_void_p(ptr)
            self._data._objects = array

        if self._arr.ndim == 0:
            self._zerod = True
        else:
            self._zerod = False

[docs] def data_as(self, obj): """ Return the data pointer cast to a particular c-types object. For example, calling ``self._as_parameter_`` is equivalent to ``self.data_as(ctypes.c_void_p)``. Perhaps you want to use the data as a pointer to a ctypes array of floating-point data: ``self.data_as(ctypes.POINTER(ctypes.c_double))``. The returned pointer will keep a reference to the array. """ return self._ctypes.cast(self._data, obj)
[docs] def shape_as(self, obj): """ Return the shape tuple as an array of some other c-types type. For example: ``self.shape_as(ctypes.c_short)``. """ if self._zerod: return None return (obj*self._arr.ndim)(*self._arr.shape)
[docs] def strides_as(self, obj): """ Return the strides tuple as an array of some other c-types type. For example: ``self.strides_as(ctypes.c_longlong)``. """ if self._zerod: return None return (obj*self._arr.ndim)(*self._arr.strides)
@property def data(self): """ A pointer to the memory area of the array as a Python integer. This memory area may contain data that is not aligned, or not in correct byte-order. The memory area may not even be writeable. The array flags and data-type of this array should be respected when passing this attribute to arbitrary C-code to avoid trouble that can include Python crashing. User Beware! The value of this attribute is exactly the same as ``self._array_interface_['data'][0]``. Note that unlike `data_as`, a reference will not be kept to the array: code like ``ctypes.c_void_p((a + b).ctypes.data)`` will result in a pointer to a deallocated array, and should be spelt ``(a + b).ctypes.data_as(ctypes.c_void_p)`` """ return self._data.value @property def shape(self): """ (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer corresponding to ``dtype('p')`` on this platform. This base-type could be `ctypes.c_int`, `ctypes.c_long`, or `ctypes.c_longlong` depending on the platform. The c_intp type is defined accordingly in `numpy.ctypeslib`. The ctypes array contains the shape of the underlying array. """ return self.shape_as(_getintp_ctype()) @property def strides(self): """ (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for the shape attribute. This ctypes array contains the strides information from the underlying array. This strides information is important for showing how many bytes must be jumped to get to the next element in the array. """ return self.strides_as(_getintp_ctype()) @property def _as_parameter_(self): """ Overrides the ctypes semi-magic method Enables `c_func(some_array.ctypes)` """ return self._data # kept for compatibility get_data = data.fget get_shape = shape.fget get_strides = strides.fget get_as_parameter = _as_parameter_.fget def _newnames(datatype, order): """ Given a datatype and an order object, return a new names tuple, with the order indicated """ oldnames = datatype.names nameslist = list(oldnames) if isinstance(order, (str, unicode)): order = [order] seen = set() if isinstance(order, (list, tuple)): for name in order: try: nameslist.remove(name) except ValueError: if name in seen: raise ValueError("duplicate field name: %s" % (name,)) else: raise ValueError("unknown field name: %s" % (name,)) seen.add(name) return tuple(list(order) + nameslist) raise ValueError("unsupported order value: %s" % (order,)) def _copy_fields(ary): """Return copy of structured array with padding between fields removed. Parameters ---------- ary : ndarray Structured array from which to remove padding bytes Returns ------- ary_copy : ndarray Copy of ary with padding bytes removed """ dt = ary.dtype copy_dtype = {'names': dt.names, 'formats': [dt.fields[name][0] for name in dt.names]} return array(ary, dtype=copy_dtype, copy=True) def _getfield_is_safe(oldtype, newtype, offset): """ Checks safety of getfield for object arrays. As in _view_is_safe, we need to check that memory containing objects is not reinterpreted as a non-object datatype and vice versa. Parameters ---------- oldtype : data-type Data type of the original ndarray. newtype : data-type Data type of the field being accessed by ndarray.getfield offset : int Offset of the field being accessed by ndarray.getfield Raises ------ TypeError If the field access is invalid """ if newtype.hasobject or oldtype.hasobject: if offset == 0 and newtype == oldtype: return if oldtype.names is not None: for name in oldtype.names: if (oldtype.fields[name][1] == offset and oldtype.fields[name][0] == newtype): return raise TypeError("Cannot get/set field of an object array") return def _view_is_safe(oldtype, newtype): """ Checks safety of a view involving object arrays, for example when doing:: np.zeros(10, dtype=oldtype).view(newtype) Parameters ---------- oldtype : data-type Data type of original ndarray newtype : data-type Data type of the view Raises ------ TypeError If the new type is incompatible with the old type. """ # if the types are equivalent, there is no problem. # for example: dtype((np.record, 'i4,i4')) == dtype((np.void, 'i4,i4')) if oldtype == newtype: return if newtype.hasobject or oldtype.hasobject: raise TypeError("Cannot change data-type for object array.") return # Given a string containing a PEP 3118 format specifier, # construct a NumPy dtype _pep3118_native_map = { '?': '?', 'c': 'S1', 'b': 'b', 'B': 'B', 'h': 'h', 'H': 'H', 'i': 'i', 'I': 'I', 'l': 'l', 'L': 'L', 'q': 'q', 'Q': 'Q', 'e': 'e', 'f': 'f', 'd': 'd', 'g': 'g', 'Zf': 'F', 'Zd': 'D', 'Zg': 'G', 's': 'S', 'w': 'U', 'O': 'O', 'x': 'V', # padding } _pep3118_native_typechars = ''.join(_pep3118_native_map.keys()) _pep3118_standard_map = { '?': '?', 'c': 'S1', 'b': 'b', 'B': 'B', 'h': 'i2', 'H': 'u2', 'i': 'i4', 'I': 'u4', 'l': 'i4', 'L': 'u4', 'q': 'i8', 'Q': 'u8', 'e': 'f2', 'f': 'f', 'd': 'd', 'Zf': 'F', 'Zd': 'D', 's': 'S', 'w': 'U', 'O': 'O', 'x': 'V', # padding } _pep3118_standard_typechars = ''.join(_pep3118_standard_map.keys()) _pep3118_unsupported_map = { 'u': 'UCS-2 strings', '&': 'pointers', 't': 'bitfields', 'X': 'function pointers', } class _Stream(object): def __init__(self, s): self.s = s self.byteorder = '@' def advance(self, n): res = self.s[:n] self.s = self.s[n:] return res def consume(self, c): if self.s[:len(c)] == c: self.advance(len(c)) return True return False def consume_until(self, c): if callable(c): i = 0 while i < len(self.s) and not c(self.s[i]): i = i + 1 return self.advance(i) else: i = self.s.index(c) res = self.advance(i) self.advance(len(c)) return res @property def next(self): return self.s[0] def __bool__(self): return bool(self.s) __nonzero__ = __bool__ def _dtype_from_pep3118(spec): stream = _Stream(spec) dtype, align = __dtype_from_pep3118(stream, is_subdtype=False) return dtype def __dtype_from_pep3118(stream, is_subdtype): field_spec = dict( names=[], formats=[], offsets=[], itemsize=0 ) offset = 0 common_alignment = 1 is_padding = False # Parse spec while stream: value = None # End of structure, bail out to upper level if stream.consume('}'): break # Sub-arrays (1) shape = None if stream.consume('('): shape = stream.consume_until(')') shape = tuple(map(int, shape.split(','))) # Byte order if stream.next in ('@', '=', '<', '>', '^', '!'): byteorder = stream.advance(1) if byteorder == '!': byteorder = '>' stream.byteorder = byteorder # Byte order characters also control native vs. standard type sizes if stream.byteorder in ('@', '^'): type_map = _pep3118_native_map type_map_chars = _pep3118_native_typechars else: type_map = _pep3118_standard_map type_map_chars = _pep3118_standard_typechars # Item sizes itemsize_str = stream.consume_until(lambda c: not c.isdigit()) if itemsize_str: itemsize = int(itemsize_str) else: itemsize = 1 # Data types is_padding = False if stream.consume('T{'): value, align = __dtype_from_pep3118( stream, is_subdtype=True) elif stream.next in type_map_chars: if stream.next == 'Z': typechar = stream.advance(2) else: typechar = stream.advance(1) is_padding = (typechar == 'x') dtypechar = type_map[typechar] if dtypechar in 'USV': dtypechar += '%d' % itemsize itemsize = 1 numpy_byteorder = {'@': '=', '^': '='}.get( stream.byteorder, stream.byteorder) value = dtype(numpy_byteorder + dtypechar) align = value.alignment elif stream.next in _pep3118_unsupported_map: desc = _pep3118_unsupported_map[stream.next] raise NotImplementedError( "Unrepresentable PEP 3118 data type {!r} ({})" .format(stream.next, desc)) else: raise ValueError("Unknown PEP 3118 data type specifier %r" % stream.s) # # Native alignment may require padding # # Here we assume that the presence of a '@' character implicitly implies # that the start of the array is *already* aligned. # extra_offset = 0 if stream.byteorder == '@': start_padding = (-offset) % align intra_padding = (-value.itemsize) % align offset += start_padding if intra_padding != 0: if itemsize > 1 or (shape is not None and _prod(shape) > 1): # Inject internal padding to the end of the sub-item value = _add_trailing_padding(value, intra_padding) else: # We can postpone the injection of internal padding, # as the item appears at most once extra_offset += intra_padding # Update common alignment common_alignment = _lcm(align, common_alignment) # Convert itemsize to sub-array if itemsize != 1: value = dtype((value, (itemsize,))) # Sub-arrays (2) if shape is not None: value = dtype((value, shape)) # Field name if stream.consume(':'): name = stream.consume_until(':') else: name = None if not (is_padding and name is None): if name is not None and name in field_spec['names']: raise RuntimeError("Duplicate field name '%s' in PEP3118 format" % name) field_spec['names'].append(name) field_spec['formats'].append(value) field_spec['offsets'].append(offset) offset += value.itemsize offset += extra_offset field_spec['itemsize'] = offset # extra final padding for aligned types if stream.byteorder == '@': field_spec['itemsize'] += (-offset) % common_alignment # Check if this was a simple 1-item type, and unwrap it if (field_spec['names'] == [None] and field_spec['offsets'][0] == 0 and field_spec['itemsize'] == field_spec['formats'][0].itemsize and not is_subdtype): ret = field_spec['formats'][0] else: _fix_names(field_spec) ret = dtype(field_spec) # Finished return ret, common_alignment def _fix_names(field_spec): """ Replace names which are None with the next unused f%d name """ names = field_spec['names'] for i, name in enumerate(names): if name is not None: continue j = 0 while True: name = 'f{}'.format(j) if name not in names: break j = j + 1 names[i] = name def _add_trailing_padding(value, padding): """Inject the specified number of padding bytes at the end of a dtype""" if value.fields is None: field_spec = dict( names=['f0'], formats=[value], offsets=[0], itemsize=value.itemsize ) else: fields = value.fields names = value.names field_spec = dict( names=names, formats=[fields[name][0] for name in names], offsets=[fields[name][1] for name in names], itemsize=value.itemsize ) field_spec['itemsize'] += padding return dtype(field_spec) def _prod(a): p = 1 for x in a: p *= x return p def _gcd(a, b): """Calculate the greatest common divisor of a and b""" while b: a, b = b, a % b return a def _lcm(a, b): return a // _gcd(a, b) * b def array_ufunc_errmsg_formatter(dummy, ufunc, method, *inputs, **kwargs): """ Format the error message for when __array_ufunc__ gives up. """ args_string = ', '.join(['{!r}'.format(arg) for arg in inputs] + ['{}={!r}'.format(k, v) for k, v in kwargs.items()]) args = inputs + kwargs.get('out', ()) types_string = ', '.join(repr(type(arg).__name__) for arg in args) return ('operand type(s) all returned NotImplemented from ' '__array_ufunc__({!r}, {!r}, {}): {}' .format(ufunc, method, args_string, types_string)) def array_function_errmsg_formatter(public_api, types): """ Format the error message for when __array_ufunc__ gives up. """ func_name = '{}.{}'.format(public_api.__module__, public_api.__name__) return ("no implementation found for '{}' on types that implement " '__array_function__: {}'.format(func_name, list(types))) def _ufunc_doc_signature_formatter(ufunc): """ Builds a signature string which resembles PEP 457 This is used to construct the first line of the docstring """ # input arguments are simple if ufunc.nin == 1: in_args = 'x' else: in_args = ', '.join('x{}'.format(i+1) for i in range(ufunc.nin)) # output arguments are both keyword or positional if ufunc.nout == 0: out_args = ', /, out=()' elif ufunc.nout == 1: out_args = ', /, out=None' else: out_args = '[, {positional}], / [, out={default}]'.format( positional=', '.join( 'out{}'.format(i+1) for i in range(ufunc.nout)), default=repr((None,)*ufunc.nout) ) # keyword only args depend on whether this is a gufunc kwargs = ( ", casting='same_kind'" ", order='K'" ", dtype=None" ", subok=True" "[, signature" ", extobj]" ) if ufunc.signature is None: kwargs = ", where=True" + kwargs # join all the parts together return '{name}({in_args}{out_args}, *{kwargs})'.format( name=ufunc.__name__, in_args=in_args, out_args=out_args, kwargs=kwargs ) def npy_ctypes_check(cls): # determine if a class comes from ctypes, in order to work around # a bug in the buffer protocol for those objects, bpo-10746 try: # ctypes class are new-style, so have an __mro__. This probably fails # for ctypes classes with multiple inheritance. if IS_PYPY: # (..., _ctypes.basics._CData, Bufferable, object) ctype_base = cls.__mro__[-3] else: # # (..., _ctypes._CData, object) ctype_base = cls.__mro__[-2] # right now, they're part of the _ctypes module return 'ctypes' in ctype_base.__module__ except Exception: return False class recursive(object): ''' A decorator class for recursive nested functions. Naive recursive nested functions hold a reference to themselves: def outer(*args): def stringify_leaky(arg0, *arg1): if len(arg1) > 0: return stringify_leaky(*arg1) # <- HERE return str(arg0) stringify_leaky(*args) This design pattern creates a reference cycle that is difficult for a garbage collector to resolve. The decorator class prevents the cycle by passing the nested function in as an argument `self`: def outer(*args): @recursive def stringify(self, arg0, *arg1): if len(arg1) > 0: return self(*arg1) return str(arg0) stringify(*args) ''' def __init__(self, func): self.func = func def __call__(self, *args, **kwargs): return self.func(self, *args, **kwargs)