This page was generated from
docs/tutorials/cga/object-oriented.ipynb.
Interactive online version:
.
Object Oriented CGA¶
This is a shelled out demo for a object-oriented approach to CGA with clifford
. The CGA
object holds the original layout for an arbitrary geometric algebra , and the conformalized version. It provides up/down projections, as well as easy ways to generate objects and operators.
Quick Use Demo¶
[1]:
from clifford.cga import CGA, Round, Translation
from clifford import Cl
g3,blades = Cl(3)
cga = CGA(g3) # make cga from existing ga
# or
cga = CGA(3) # generate cga from dimension of 'base space'
locals().update(cga.blades) # put ga's blades in local namespace
C = cga.round(e1,e2,e3,-e2) # generate unit sphere from points
C
/home/docs/checkouts/readthedocs.org/user_builds/clifford/envs/latest/lib/python3.8/site-packages/pyganja/__init__.py:2: UserWarning: Failed to import cef_gui, cef functions will be unavailable
from .script_api import *
[1]:
Sphere
[2]:
## Objects
cga.round() # from None
cga.round(3) # from dim of space
cga.round(e1,e2,e3,-e2) # from points
cga.round(e1,e2,e3) # from points
cga.round(e1,e2) # from points
cga.round((e1,3)) # from center, radius
cga.round(cga.round().mv)# from existing multivector
cga.flat() # from None
cga.flat(2) # from dim of space
cga.flat(e1,e2) # from points
cga.flat(cga.flat().mv) # from existing multivector
## Operations
cga.dilation() # from from None
cga.dilation(.4) # from int
cga.translation() # from None
cga.translation(e1+e2) # from vector
cga.translation(cga.down(cga.null_vector()))
cga.rotation() # from None
cga.rotation(e12+e23) # from bivector
cga.transversion(e1+e2).mv
/home/docs/checkouts/readthedocs.org/user_builds/clifford/envs/latest/lib/python3.8/site-packages/clifford/_multivector.py:281: RuntimeWarning: divide by zero encountered in true_divide
newValue = self.value / other
/home/docs/checkouts/readthedocs.org/user_builds/clifford/envs/latest/lib/python3.8/site-packages/clifford/_multivector.py:281: RuntimeWarning: invalid value encountered in true_divide
newValue = self.value / other
[2]:
1.0 + (0.5^e14) - (0.5^e15) + (0.5^e24) - (0.5^e25)
[3]:
cga.round().inverted()
[3]:
(0.74226^e1234) - (1.21395^e1235) + (0.19913^e1245) + (0.17632^e1345) - (0.08081^e2345)
[4]:
D = cga.dilation(5)
cga.down(D(e1))
[4]:
(5.0^e1)
[5]:
C.mv # any CGA object/operator has a multivector
[5]:
(1.0^e1235)
[6]:
C.center_down,C.radius # some properties of spheres
[6]:
(0, 1.0)
[7]:
T = cga.translation(e1+e2) # make a translation
C_ = T(C) # translate the sphere
cga.down(C_.center) # compute center again
[7]:
(1.0^e1) + (1.0^e2)
[8]:
cga.round() # no args == random sphere
cga.translation() # random translation
[8]:
Translation
[9]:
if 1 in map(int, [1,2]):
print(3)
3
Objects¶
Vectors¶
[10]:
a = cga.base_vector() # random vector with components in base space only
a
[10]:
-(0.74713^e1) + (0.19482^e2) - (0.63152^e3)
[11]:
cga.up(a)
[11]:
-(0.74713^e1) + (0.19482^e2) - (0.63152^e3) - (0.00251^e4) + (0.99749^e5)
[12]:
cga.null_vector() # create null vector directly
[12]:
(0.02501^e1) + (1.41201^e2) + (1.47494^e3) + (1.58494^e4) + (2.58494^e5)
Sphere (point pair, circles)¶
[13]:
C = cga.round(e1, e2, -e1, e3) # generates sphere from points
C = cga.round(e1, e2, -e1) # generates circle from points
C = cga.round(e1, e2) # generates point-pair from points
#or
C2 = cga.round(2) # random 2-sphere (sphere)
C1 = cga.round(1) # random 1-sphere, (circle)
C0 = cga.round(0) # random 0-sphere, (point pair)
C1.mv # access the multivector
[13]:
(0.28986^e123) + (0.83473^e124) + (1.26772^e125) - (0.22725^e134) - (0.37397^e135) - (0.08308^e145) + (0.17663^e234) + (0.17591^e235) - (0.26592^e245) + (0.08997^e345)
[14]:
C = cga.round(e1, e2, -e1, e3)
C.center,C.radius # spheres have properties
[14]:
(-(1.0^e4) + (1.0^e5), 1.0)
[15]:
cga.down(C.center) == C.center_down
[15]:
True
[16]:
C_ = cga.round().from_center_radius(C.center,C.radius)
C_.center,C_.radius
[16]:
(-(2.0^e4) + (2.0^e5), 0.7071067811865476)
Operators¶
[17]:
T = cga.translation(e1) # generate translation
T.mv
[17]:
1.0 - (0.5^e14) - (0.5^e15)
[18]:
C = cga.round(e1, e2, -e1)
T.mv*C.mv*~T.mv # translate a sphere
[18]:
-(0.5^e124) + (0.5^e125) - (1.0^e245)
[19]:
T(C) # shorthand call, same as above. returns type of arg
[19]:
Circle
[20]:
T(C).center
[20]:
(2.0^e1) + (2.0^e5)
[ ]:
[ ]: