Bibliography

DL03

Chris Doran and Anthony Lasenby. Geometric Algebra for Physicists. Cambridge University Press, 2003. URL: http://www.mrao.cam.ac.uk/~clifford.

DFM09

Leo Dorst, Daniel Fontijne, and Stephen Mann. Geometric Algebra for Computer Science: An Object-Oriented Approach to Geometry. Morgan Kaufmann Publishers Inc., 2009. ISBN 9780080553108.

DV11

Leo Dorst and Robert Valkenburg. Square Root and Logarithm of Rotors in 3D Conformal Geometric Algebra Using Polar Decomposition, pages 81–104. Springer London, 01 2011. doi:10.1007/978-0-85729-811-9_5.

HL19

Hugo Hadfield and Joan Lasenby. Direct linear interpolation of geometric objects in conformal geometric algebra. Advances in Applied Clifford Algebras, 29:, 09 2019. doi:10.1007/s00006-019-1003-y.

HS17

Eckhard Hitzer and Stephen Sangwine. Multivector and multivector matrix inverses in real clifford algebras. Applied Mathematics and Computation, 311:375–389, Oct 2017. doi:10.1016/j.amc.2017.05.027.

LLW04

Anthony Lasenby, Joan Lasenby, and Rich Wareham. A Covariant Approach to Geometry using Geometric Algebra. Technical Report F-INFENG/TR-483, Department of Engineering, University of Cambridge, 2004. URL: https://pdfs.semanticscholar.org/baba/976fd7f6577eeaa1d3ef488c1db13ec24652.pdf.

LHL19

Joan Lasenby, Hugo Hadfield, and Anthony Lasenby. Calculating the rotor between conformal objects. Advances in Applied Clifford Algebras, 29:102, 10 2019. doi:10.1007/s00006-019-1014-8.

WCL05

Rich Wareham, Jonathan Cameron, and Joan Lasenby. Applications of conformal geometric algebra in computer vision and graphics. In Hongbo Li, Peter J. Olver, and Gerald Sommer, editors, Computer Algebra and Geometric Algebra with Applications, 329–349. Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

WL08

Rich Wareham and Joan Lasenby. Mesh vertex pose and position interpolation using geometric algebra. In Articulated Motion and Deformable Objects, 122–131. Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.