

clifford: Geometric Algebra for Python

In [1]: from clifford.g3 import * # import GA for 3D space

In [2]: import math

In [3]: a = e1 + 2*e2 + 3*e3 # vector

In [4]: R = math.e**(math.pi/4*e12) # rotor

In [5]: R*a*~R # rotate the vector
Out[5]: (2.0^e1) - (1.0^e2) + (3.0^e3)

This module implements Geometric Algebras (a.k.a. Clifford algebras).
Geometric Algebra (GA) is a universal algebra which subsumes complex algebra, quaternions, linear algebra and several other independent mathematical systems.
Scalars, vectors, and higher-grade entities can be mixed freely and consistently in the form of mixed-grade multivectors.

[image: _images/blades.png]

API

	clifford (clifford)

	cga (clifford.cga)

	tools (clifford.tools)

	operator functions (clifford.operator)

	transformations (clifford.transformations)

clifford (clifford)

The top-level module.
Provides two core classes, Layout and MultiVector, along with several helper functions to implement the algebras.

Constructing algebras

Note that typically the predefined-algebras are sufficient, and there is no need to build an algebra from scratch.

	Cl([p, q, r, sig, names, firstIdx, mvClass])

	Returns a Layout and basis blade MultiVectors for the geometric algebra \(Cl_{p,q,r}\).

	conformalize(layout[, added_sig, mvClass])

	Conformalize a Geometric Algebra

Whether you construct your algebras from scratch, or use the predefined ones, you’ll end up working with the following types:

	MultiVector(layout[, value, string, dtype])

	An element of the algebra

	Layout(sig, *[, ids, order, names])

	Layout stores information regarding the geometric algebra itself and the internal representation of multivectors.

	ConformalLayout(*args[, layout])

	A layout for a conformal algebra, which adds extra constants and helpers.

Advanced algebra configuration

It is unlikely you will need these features, but they remain as a better
spelling for features which have always been in clifford.

	BasisBladeOrder(bitmaps)

	Represents the storage order in memory of basis blade coefficients.

	BasisVectorIds(blade_ids)

	Stores ids for the ordered set of basis vectors, typically integers.

Global configuration functions

These functions are used to change the global behavior of clifford.

	
clifford.eps(newEps=None)[source]

	Get/Set the epsilon for float comparisons.

	
clifford.pretty(precision=None)[source]

	Makes repr(MultiVector) default to pretty-print.

precision arg can be used to set the printed precision.

	Parameters

	precision (int [https://docs.python.org/3/library/functions.html#int]) – number of sig figs to print past decimal

Examples

>>> pretty(5)

	
clifford.ugly()[source]

	Makes repr(MultiVector) default to eval-able representation.

	
clifford.print_precision(newVal)[source]

	Set the epsilon for float comparisons.

	Parameters

	newVal (int [https://docs.python.org/3/library/functions.html#int]) – number of sig figs to print (see builtin round)

Examples

>>> print_precision(5)

Miscellaneous classes

	MVArray

	MultiVector Array

	Frame

	A frame of vectors

	BladeMap(blades_map[, map_scalars])

	A Map Relating Blades in two different algebras

Miscellaneous functions

	grade_obj(objin[, threshold])

	Returns the modal grade of a multivector

	randomMV(layout[, min, max, grades, …])

	n Random MultiVectors with given layout.

clifford.Cl

	
clifford.Cl(p=0, q=0, r=0, sig=None, names=None, firstIdx=1, mvClass=<class 'clifford._multivector.MultiVector'>)[source]

	Returns a Layout and basis blade MultiVectors for the geometric algebra \(Cl_{p,q,r}\).

The notation \(Cl_{p,q,r}\) means that the algebra is \(p+q+r\)-dimensional, with the first \(p\) vectors with positive signature, the next \(q\) vectors negative, and the final \(r\) vectors with null signature.

	Returns

	
	layout (Layout) – The resulting layout

	blades (Dict[str, MultiVector]) – The blades of the returned layout, equivalent to layout.blades.

clifford.conformalize

	
clifford.conformalize(layout, added_sig=[1, -1], *, mvClass=<class 'clifford._multivector.MultiVector'>, **kwargs)[source]

	Conformalize a Geometric Algebra

Given the Layout for a GA of signature (p, q), this
will produce a GA of signature (p+1, q+1), as well as
return a new list of blades and some stuff. stuff
is a dict containing the null basis blades, and some
up/down functions for projecting in/out of the CGA.

	Parameters

	
	layout (clifford.Layout) – layout of the GA to conformalize (the base)

	added_sig (list-like) – list of +1, -1 denoted the added signatures

	**kwargs – passed to Cl() used to generate conformal layout

	Returns

	
	layout_c (ConformalLayout) – layout of the base GA

	blades_c (dict) – blades for the CGA

	stuff (dict) – dict mapping the following members of ConformalLayout by their
names, for easy unpacking into the global namespace:

	ConformalLayout.ep

	

	ConformalLayout.en

	

	ConformalLayout.eo

	

	ConformalLayout.einf

	

	ConformalLayout.E0

	

	ConformalLayout.I_base

	

	up(x)

	up-project a vector from GA to CGA

	down(x)

	down-project a vector from CGA to GA

	homo(x)

	homogenize a CGA vector

Examples

>>> from clifford import Cl, conformalize
>>> G2, blades = Cl(2)
>>> G2c, bladesc, stuff = conformalize(G2)
>>> locals().update(bladesc)
>>> locals().update(stuff)

clifford.MultiVector

	
class clifford.MultiVector(layout, value=None, string=None, *, dtype: numpy.dtype = <class 'numpy.float64'>)[source]

	An element of the algebra

	Parameters

	
	layout (instance of clifford.Layout) – The layout of the algebra

	value (sequence of length layout.gaDims) – The coefficients of the base blades

	dtype (numpy.dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype]) – The datatype to use for the multivector, if no
value was passed.

New in version 1.1.0.

Notes

The following operators are overloaded:

	A * B : geometric product

	A ^ B : outer product

	A | B : inner product

	A << B : left contraction

	~M : reversion

	M(N) : grade or subspace projection

	M[N] : blade projection

	
exp() → clifford._multivector.MultiVector[source]

	

	
vee(other) → clifford._multivector.MultiVector[source]

	Vee product \(A \vee B\).

This is often defined as:

\[\begin{split}(A \vee B)^* &= A^* \wedge B^* \\
\implies A \vee B &= (A^* \wedge B^*)^{-*}\end{split}\]

This is very similar to the meet() function, but
always uses the dual in the full space .

Internally, this is actually implemented using the complement
functions instead, as these work in degenerate metrics like PGA too,
and are equivalent but faster in other metrics.

	
__and__(other) → clifford._multivector.MultiVector[source]

	self & other, an alias for vee()

	
__mul__(other) → clifford._multivector.MultiVector[source]

	self * other, the geometric product \(MN\)

	
__xor__(other) → clifford._multivector.MultiVector[source]

	self ^ other, the Outer product \(M \wedge N\)

	
__or__(other) → clifford._multivector.MultiVector[source]

	self | other, the inner product \(M \cdot N\)

	
__add__(other) → clifford._multivector.MultiVector[source]

	self + other, addition

	
__sub__(other) → clifford._multivector.MultiVector[source]

	self - other, Subtraction

	
right_complement() → clifford._multivector.MultiVector[source]

	

	
left_complement() → clifford._multivector.MultiVector[source]

	

	
as_array() → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][source]

	

	
mag2() → numbers.Number [https://docs.python.org/3/library/numbers.html#numbers.Number][source]

	Magnitude (modulus) squared, \({|M|}^2\)

Note in mixed signature spaces this may be negative

	
adjoint() → clifford._multivector.MultiVector[source]

	Adjoint / reversion, \(\tilde M\)

Aliased as ~M to reflect \(\tilde M\), one of several
conflicting notations.

Note that ~(N * M) == ~M * ~N.

	
__invert__() → clifford._multivector.MultiVector

	Adjoint / reversion, \(\tilde M\)

Aliased as ~M to reflect \(\tilde M\), one of several
conflicting notations.

Note that ~(N * M) == ~M * ~N.

	
__getitem__(key: Union[MultiVector, tuple [https://docs.python.org/3/library/stdtypes.html#tuple], int [https://docs.python.org/3/library/functions.html#int]]) → numbers.Number [https://docs.python.org/3/library/numbers.html#numbers.Number][source]

	value = self[key].

If key is a blade tuple (e.g. (0, 1) or (1, 3)), or a blade,
(e.g. e12), then return the (real) value of that blade’s coefficient.
Otherwise, treat key as an index into the list of coefficients.

	
__call__(other, *others) → clifford._multivector.MultiVector[source]

	Return a new multi-vector projected onto a grade or another MultiVector

M(g1, ... gn) gives \(\left<M\right>_{g1} + \cdots + \left<M\right>_{gn}\)

M(N) calls project() as N.project(M).

Examples

>>> from clifford.g2 import *
>>> M = 1 + 2*e1 + 3*e12
>>> M(0)
1
>>> M(0, 2)
1 + (3^e12)

	
clean(eps=None) → clifford._multivector.MultiVector[source]

	Sets coefficients whose absolute value is < eps to exactly 0.

eps defaults to the current value of the global _settings._eps.

	
round(eps=None) → clifford._multivector.MultiVector[source]

	Rounds all coefficients according to Python’s rounding rules.

eps defaults to the current value of the global _settings._eps.

	
lc(other) → clifford._multivector.MultiVector[source]

	The left-contraction of two multivectors, \(M\rfloor N\)

	
property pseudoScalar

	Returns a MultiVector that is the pseudoscalar of this space.

	
property I

	Returns a MultiVector that is the pseudoscalar of this space.

	
invPS() → clifford._multivector.MultiVector[source]

	Returns the inverse of the pseudoscalar of the algebra.

	
isScalar() → bool [https://docs.python.org/3/library/functions.html#bool][source]

	Returns true iff self is a scalar.

	
isBlade() → bool [https://docs.python.org/3/library/functions.html#bool][source]

	Returns true if multivector is a blade.

	
isVersor() → bool [https://docs.python.org/3/library/functions.html#bool][source]

	Returns true if multivector is a versor.
From Leo Dorsts GA for computer science section 21.5, definition from 7.6.4

	
grades(eps=None) → Set[int [https://docs.python.org/3/library/functions.html#int]][source]

	Return the grades contained in the multivector.

Changed in version 1.1.0: Now returns a set instead of a list

Changed in version 1.3.0: Accepts an eps argument

	
property blades_list

	ordered list of blades present in this MV

	
normal() → clifford._multivector.MultiVector[source]

	Return the (mostly) normalized multivector.

The _mostly_ comes from the fact that some multivectors have a
negative squared-magnitude. So, without introducing formally
imaginary numbers, we can only fix the normalized multivector’s
magnitude to +-1.

\(\frac{M}{|M|}\) up to a sign

	
leftLaInv() → clifford._multivector.MultiVector[source]

	Return left-inverse using a computational linear algebra method
proposed by Christian Perwass.

	
normalInv(check=True) → clifford._multivector.MultiVector[source]

	The inverse of itself if \(M \tilde M = |M|^2\).

\[M^{-1} = \tilde M / (M \tilde M)\]

	Parameters

	check (bool [https://docs.python.org/3/library/functions.html#bool]) – When true, the default, validate that it is appropriate to use this
method of inversion.

	
inv() → clifford._multivector.MultiVector[source]

	

	
leftInv() → clifford._multivector.MultiVector

	Return left-inverse using a computational linear algebra method
proposed by Christian Perwass.

	
rightInv() → clifford._multivector.MultiVector

	Return left-inverse using a computational linear algebra method
proposed by Christian Perwass.

	
dual(I=None) → clifford._multivector.MultiVector[source]

	The dual of the multivector against the given subspace I, \(\tilde M = MI^{-1}\)

I defaults to the pseudoscalar.

	
commutator(other) → clifford._multivector.MultiVector[source]

	The commutator product of two multivectors.

\([M, N] = M \times N = (MN + NM)/2\)

	
x(other) → clifford._multivector.MultiVector

	The commutator product of two multivectors.

\([M, N] = M \times N = (MN + NM)/2\)

	
anticommutator(other) → clifford._multivector.MultiVector[source]

	The anti-commutator product of two multivectors, \((MN + NM)/2\)

	
gradeInvol() → clifford._multivector.MultiVector[source]

	The grade involution of the multivector.

\[M^* = \sum_{i=0}^{\text{dims}}
 {(-1)^i \left<M\right>_i}\]

	
property even

	Even part of this multivector

defined as
M + M.gradInvol()

	
property odd

	Odd part of this mulitvector

defined as
M +- M.gradInvol()

	
conjugate() → clifford._multivector.MultiVector[source]

	The Clifford conjugate (reversion and grade involution).

\(M^*\) = (~M).gradeInvol()

	
project(other) → clifford._multivector.MultiVector[source]

	Projects the multivector onto the subspace represented by this blade.

\(P_A(M) = (M \rfloor A) A^{-1}\)

	
factorise() → Tuple[List[clifford._multivector.MultiVector], numbers.Number [https://docs.python.org/3/library/numbers.html#numbers.Number]][source]

	Factorises a blade into basis vectors and an overall scale.

Uses Leo Dorsts algorithm from 21.6 of GA for Computer Science

	
basis() → List[clifford._multivector.MultiVector][source]

	Finds a vector basis of this subspace.

	
join(other) → clifford._multivector.MultiVector[source]

	The join of two blades, \(J = A \cup B\)

Similar to the wedge, \(W = A \wedge B\), but without decaying to 0
for blades which share a vector.

	
meet(other, subspace=None) → clifford._multivector.MultiVector[source]

	The meet of two blades, \(A \cap B\).

Computation is done with respect to a subspace that defaults to
the join() if none is given.

Similar to the vee(), \(V = A \vee B\), but without decaying
to 0 for blades lying in the same subspace.

	
astype(*args, **kwargs)[source]

	Change the underlying scalar type of this vector.

Can be used to force lower-precision floats or integers

See np.ndarray.astype for argument descriptions.

clifford.Layout

	
class clifford.Layout(sig, *, ids=None, order=None, names=None)[source]

	Layout stores information regarding the geometric algebra itself and the
internal representation of multivectors.

	Parameters

	
	sig (List[int [https://docs.python.org/3/library/functions.html#int]]) – The signature of the vector space. This should be
a list of positive and negative numbers where the sign determines the
sign of the inner product of the corresponding vector with itself.
The values are irrelevant except for sign. This list also determines
the dimensionality of the vectors.

Examples:

sig=[+1, -1, -1, -1] # Hestenes', et al. Space-Time Algebra
sig=[+1, +1, +1] # 3-D Euclidean signature

	ids (Optional[BasisVectorIds[Any]]) – A list of ids to associate with each basis vector. These ids are used
to generate names (if not passed explicitly), and also used when using
tuple-notation to access elements, such as mv[(1, 3)] = 1.
Defaults to BasisVectorIds.ordered_integers(len(sig)); that is,
integers starting at 1.
This supersedes the old firstIdx argument.

Examples:

ids=BasisVectorIds.ordered_integers(2, first_index=1)
ids=BasisVectorIds([10, 20, 30])

New in version 1.3.0.

	order (Optional[BasisBladeOrder]) – A specification of the memory order to use when storing the basis blades.
Defaults to BasisBladeOrder.shortlex(len(sig)).
This supersedes the old bladeTupList argument.

Warning

Various tools within clifford assume this default, so do not change
this unless you know what you’re doing!

New in version 1.3.0.

	bladeTupList (List[Tuple[int [https://docs.python.org/3/library/functions.html#int], ..]]) – List of tuples corresponding to the blades in the whole
algebra. This list determines the order of coefficients in the
internal representation of multivectors. The entry for the scalar
must be an empty tuple, and the entries for grade-1 vectors must be
singleton tuples. Remember, the length of the list will be ``2**dims`.

Example:

bladeTupList = [(), (0,), (1,), (0, 1)] # 2-D

Deprecated since version 1.3.0: Use the new order and ids arguments instead. The above example
can be spelt with the slightly longer:

ids = BasisVectorIds([.ordered_integers(2, first_index=0)])
order = ids.order_from_tuples([(), (0,), (1,), (0, 1)])
Layout(sig, ids=ids, order=order)

	firstIdx (int [https://docs.python.org/3/library/functions.html#int]) – The index of the first vector. That is, some systems number
the base vectors starting with 0, some with 1.

Deprecated since version 1.3.0: Use the new ids argument instead, for which the docs show an
equivalent replacement

	names (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) – List of names of each blade. When pretty-printing multivectors,
use these symbols for the blades. names should be in the same order
as order. You may use an empty string for scalars. By
default, the name for each non-scalar blade is ‘e’ plus the ids
of the blade as given in ids.

Example:

names=['', 's0', 's1', 'i'] # 2-D

	
dims

	dimensionality of vectors (len(self.sig))

	
sig

	normalized signature, with all values +1 or -1

	
bladeTupList[source]

	list of blades

	
gradeList

	corresponding list of the grades of each blade

	
gaDims

	2**dims

	
names

	pretty-printing symbols for the blades

	
gmt[source]

	Multiplication table for the geometric product.

This is a tensor of rank 3 such that
\(a = b c\) can be computed as
\(a_j = \sum_{i,k} b_i \mathit{M}_{ijk} c_k\).

	
omt[source]

	Multiplication table for the inner product, stored in the same way as gmt

	
imt[source]

	Multiplication table for the outer product, stored in the same way as gmt

	
lcmt[source]

	Multiplication table for the left-contraction, stored in the same way as gmt

	
bladeTupList[source]

	

	
property firstIdx

	Starting point for vector indices

Deprecated since version 1.3.0: This attribute has been deprecated, to match the deprecation of the
matching argument in the constructor. Internal code should be using
self._basis_vector_ids.values[x] instead of
x + self.firstIdx. This replacement API is not yet finalized,
so if you need it please file an issue on github!

	
dual_func[source]

	Generates the dual function for the pseudoscalar

	
vee_func[source]

	Generates the vee product function

	
parse_multivector(mv_string: str [https://docs.python.org/3/library/stdtypes.html#str]) → clifford._multivector.MultiVector[source]

	Parses a multivector string into a MultiVector object

	
gmt_func_generator(grades_a=None, grades_b=None, filter_mask=None)[source]

	

	
imt_func_generator(grades_a=None, grades_b=None, filter_mask=None)[source]

	

	
omt_func_generator(grades_a=None, grades_b=None, filter_mask=None)[source]

	

	
lcmt_func_generator(grades_a=None, grades_b=None, filter_mask=None)[source]

	

	
get_grade_projection_matrix(grade)[source]

	Returns the matrix M_g that performs grade projection via left multiplication
eg. M_g@A.value = A(g).value

	
gmt_func[source]

	

	
imt_func[source]

	

	
omt_func[source]

	

	
lcmt_func[source]

	

	
left_complement_func[source]

	

	
right_complement_func[source]

	

	
adjoint_func[source]

	This function returns a fast jitted adjoint function

	
inv_func[source]

	Get a function that returns left-inverse using a computational linear algebra method
proposed by Christian Perwass.

	-1

	-1

M where M * M == 1

	
get_left_gmt_matrix(x)[source]

	This produces the matrix X that performs left multiplication with x
eg. X@b == (x*b).value

	
get_right_gmt_matrix(x)[source]

	This produces the matrix X that performs right multiplication with x
eg. X@b == (b*x).value

	
load_ga_file(filename: str [https://docs.python.org/3/library/stdtypes.html#str]) → clifford._mvarray.MVArray[source]

	Loads the data from a ga file, checking it matches this layout.

	
grade_mask(grade: int [https://docs.python.org/3/library/functions.html#int]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][source]

	

	
property rotor_mask

	

	
property metric

	

	
property scalar

	the scalar of value 1, for this GA (a MultiVector object)

useful for forcing a MultiVector type

	
property pseudoScalar

	the psuedoScalar

	
property I

	the psuedoScalar

	
randomMV(n=1, **kwargs) → clifford._multivector.MultiVector[source]

	Convenience method to create a random multivector.

see clifford.randomMV for details

	
randomV(n=1, **kwargs) → clifford._multivector.MultiVector[source]

	generate n random 1-vector s

	
randomRotor() → clifford._multivector.MultiVector[source]

	generate a random Rotor.

this is created by muliplying an N unit vectors, where N is
the dimension of the algebra if its even; else its one less.

	
property basis_vectors

	dictionary of basis vectors

	
property basis_names

	Get the names of the basis vectors, in the order they are stored.

Changed in version 1.3.0: Returns a list instead of a numpy array

	
property basis_vectors_lst

	Like blades_of_grade(1), but ordered based on the ids parameter
passed at construction.

	
blades_of_grade(grade: int [https://docs.python.org/3/library/functions.html#int]) → List[clifford._multivector.MultiVector][source]

	return all blades of a given grade,

	
property blades_list

	List of blades in this layout matching the order argument this layout
was constructed from.

	
property blades

	

	
bases(mvClass=<class 'clifford._multivector.MultiVector'>, grades: Optional[Container[int]] = None) → Dict[str [https://docs.python.org/3/library/stdtypes.html#str], clifford._multivector.MultiVector][source]

	Returns a dictionary mapping basis element names to their MultiVector
instances, optionally for specific grades

if you are lazy, you might do this to populate your namespace
with the variables of a given layout.

>>> locals().update(layout.blades())

Changed in version 1.1.0: This dictionary includes the scalar

	
MultiVector(*args, **kwargs) → clifford._multivector.MultiVector[source]

	Create a multivector in this layout

convenience func to MultiVector(layout)

clifford.ConformalLayout

	
class clifford.ConformalLayout(*args, layout=None, **kwargs)[source]

	Bases: clifford._layout.Layout

A layout for a conformal algebra, which adds extra constants and helpers.

Typically these should be constructed via clifford.conformalize().

New in version 1.2.0.

	
ep

	The first added basis element, \(e_{+}\), usually with \(e_{+}^2 = +1\)

	Type

	MultiVector

	
en

	The first added basis element, \(e_{-}\), usually with \(e_{-}^2 = -1\)

	Type

	MultiVector

	
eo

	The null basis vector at the origin, \(e_o = 0.5(e_{-} - e_{+})\)

	Type

	MultiVector

	
einf

	The null vector at infinity, \(e_\infty = e_{-} + e_{+}\)

	Type

	MultiVector

	
E0

	The minkowski subspace bivector, \(e_\infty \wedge e_o\)

	Type

	MultiVector

	
I_base

	The pseudoscalar of the base ga, in cga layout

	Type

	MultiVector

	
up(x: clifford._multivector.MultiVector) → clifford._multivector.MultiVector[source]

	up-project a vector from GA to CGA

	
homo(x: clifford._multivector.MultiVector) → clifford._multivector.MultiVector[source]

	homogenize a CGA vector

	
down(x: clifford._multivector.MultiVector) → clifford._multivector.MultiVector[source]

	down-project a vector from CGA to GA

clifford.Frame

	
class clifford.Frame[source]

	Bases: clifford._mvarray.MVArray

A frame of vectors

	
property En

	Volume element for this frame, \(E_n = e_1 \wedge e_2 \wedge \cdots \wedge e_n\)

	
property inv

	The inverse frame of self

	
is_innermorphic_to(other: clifford._frame.Frame, eps: float [https://docs.python.org/3/library/functions.html#float] = None) → bool [https://docs.python.org/3/library/functions.html#bool][source]

	Is this frame innermorphic to other?

innermorphic means both frames share the same inner-product
between corresponding vectors. This implies that the two frames
are related by an orthogonal transform.

clifford.BladeMap

	
class clifford.BladeMap(blades_map, map_scalars=True)[source]

	A Map Relating Blades in two different algebras

Examples

>>> from clifford import Cl
>>> # Dirac Algebra `D`
>>> D, D_blades = Cl(1, 3, firstIdx=0, names='d')
>>> locals().update(D_blades)

>>> # Pauli Algebra `P`
>>> P, P_blades = Cl(3, names='p')
>>> locals().update(P_blades)
>>> sta_split = BladeMap([(d01, p1),
... (d02, p2),
... (d03, p3),
... (d12, p12),
... (d23, p23),
... (d13, p13)])

	
property b1

	

	
property b2

	

	
property layout1

	

	
property layout2

	

clifford.grade_obj

	
clifford.grade_obj(objin, threshold=1e-07)[source]

	Returns the modal grade of a multivector

clifford.randomMV

	
clifford.randomMV(layout, min=-2.0, max=2.0, grades=None, mvClass=<class 'clifford._multivector.MultiVector'>, uniform=None, n=1, normed=False)[source]

	n Random MultiVectors with given layout.

Coefficients are between min and max, and if grades is a list of integers,
only those grades will be non-zero.

Examples

>>> randomMV(layout, min=-2.0, max=2.0, grades=None, uniform=None, n=2)

cga (clifford.cga)

Object Oriented Conformal Geometric Algebra.

Examples

>>> from clifford import Cl
>>> from clifford.cga import CGA
>>> g3, blades = Cl(3)
>>> locals().update(blades)
>>> g3c = CGA(g3)
>>> C = g3c.round(3) # create random sphere
>>> T = g3c.translation(e1+e2) # create translation
>>> C_ = T(C) # translate the sphere
>>> C_.center # compute center of sphere
-(1.0^e4) - (1.0^e5)

The CGA

	CGA(layout_orig)

	Conformal Geometric Algebra

Objects

	Flat(cga, *args)

	A line, plane, or hyperplane.

	Round(cga, *args)

	A point pair, circle, sphere or hyper-sphere.

Operators

	Rotation(cga, *args)

	A Rotation

	Dilation(cga, *args)

	A global dilation

	Translation(cga, *args)

	A Translation

	Transversion(cga, *args)

	A Transversion

Meta-Class

	CGAThing(cga)

	base class for cga objects and operators.

clifford.cga.CGA

	
class clifford.cga.CGA(layout_orig)[source]

	Conformal Geometric Algebra

conformalizes the layout_orig, and provides several
methods and for objects/operators

	Parameters

	layout_orig ([clifford.Layout, int]) – a layout for the base geometric algebra which is conformalized
if given as an int, then generates a euclidean space of given
dimension

Examples

>>> from clifford import Cl
>>> from clifford.cga import CGA
>>> g3, blades = Cl(3)
>>> g3c = CGA(g3)
>>> g3c = CGA(3)

Methods

	__init__

	Initialize self.

	base_vector

	random vector in the lower(original) space

	dilation

	see Dilation

	flat

	see Flat

	null_vector

	generates random null vector if x is None, or returns a null vector from base vector x, if x^self.I_base ==0 returns x,

	rotation

	see Rotation

	round

	see Round

	straight_up

	place a vector from layout_orig into this CGA, without up()

	translation

	see Translation

	transversion

	see Transversion

clifford.cga.CGA.__init__

	
CGA.__init__(layout_orig) → None [https://docs.python.org/3/library/constants.html#None][source]

	Initialize self. See help(type(self)) for accurate signature.

clifford.cga.CGA.base_vector

	
CGA.base_vector() → clifford._multivector.MultiVector[source]

	random vector in the lower(original) space

clifford.cga.CGA.dilation

	
CGA.dilation(*args) → clifford.cga.Dilation[source]

	see Dilation

clifford.cga.CGA.flat

	
CGA.flat(*args) → clifford.cga.Flat[source]

	see Flat

clifford.cga.CGA.null_vector

	
CGA.null_vector(x=None) → clifford._multivector.MultiVector[source]

	generates random null vector if x is None, or
returns a null vector from base vector x, if x^self.I_base ==0
returns x,

a null vector will lay on the horisphere

clifford.cga.CGA.rotation

	
CGA.rotation(*args) → clifford.cga.Rotation[source]

	see Rotation

clifford.cga.CGA.round

	
CGA.round(*args) → clifford.cga.Round[source]

	see Round

clifford.cga.CGA.straight_up

	
CGA.straight_up(x) → clifford._multivector.MultiVector[source]

	place a vector from layout_orig into this CGA, without up()

clifford.cga.CGA.translation

	
CGA.translation(*args) → clifford.cga.Translation[source]

	see Translation

clifford.cga.CGA.transversion

	
CGA.transversion(*args) → clifford.cga.Transversion[source]

	see Transversion

clifford.cga.Flat

	
class clifford.cga.Flat(cga, *args)[source]

	A line, plane, or hyperplane.

Typically constructed as method of existing cga, like cga.flat()

multivector is accessable by mv property

	Parameters

	
	cga (CGA) – the cga object

	args ([int [https://docs.python.org/3/library/functions.html#int], Multivector, Multivectors]) –
	if nothing supplied, generate a flat of highest dimension

	int: dimension of flat (2=line, 3=plane, etc)

	Multivector : can be
* existing Multivector representing the Flat
* vectors on the flat

Examples

>>> cga = CGA(3)
>>> locals().update(cga.blades)
>>> F = cga.flat() # from None
>>> F = cga.flat(2) # from dim of space
>>> F = cga.flat(e1, e2) # from points
>>> F = cga.flat(cga.flat().mv) # from existing multivector

Methods

	__init__

	Initialize self.

	inverted

	inverted version of this thing.

	involuted

	inverted version of this thing.

clifford.cga.Flat.__init__

	
Flat.__init__(cga, *args) → None [https://docs.python.org/3/library/constants.html#None][source]

	Initialize self. See help(type(self)) for accurate signature.

clifford.cga.Flat.inverted

	
Flat.inverted() → clifford._multivector.MultiVector

	inverted version of this thing.

self -> ep*self*ep

where ep is the positive added basis vector

clifford.cga.Flat.involuted

	
Flat.involuted() → clifford._multivector.MultiVector

	inverted version of this thing.

self -> E0*self*E0

where E0 is the added minkowski bivector

clifford.cga.Round

	
class clifford.cga.Round(cga, *args)[source]

	A point pair, circle, sphere or hyper-sphere.

Typically constructed as method of existing cga, like cga.round()

multivector is accessable by mv property

	Parameters

	
	cga (CGA) – the cga object

	args ([int [https://docs.python.org/3/library/functions.html#int], Multivector, Multivectors]) –
	if nothing supplied, generate a round of highest dimension

	int: dimension of flat (2=point pair, 3=circle, etc)

	Multivector : can be
* existing Multivector representing the round
* vectors on the round

Examples

>>> cga = CGA(3)
>>> locals().update(cga.blades)
>>> cga.round() # from None
Sphere
>>> cga.round(2) # from dim of space
Sphere
>>> cga.round(e1, e2, -e1) # from points
Circle
>>> cga.round(cga.flat().mv) # from existing multivector
Sphere

Attributes

	center

	center of this round, as a null vector

	center_down

	center of this round, as a down-projected vector (in I_base)

	dim

	dimension of this round

	dual

	self.mv* self.layout.I

	radius

	radius of the round (a float)

Methods

	__init__

	Initialize self.

	from_center_radius

	construct a round from center/radius

	inverted

	inverted version of this thing.

	involuted

	inverted version of this thing.

clifford.cga.Round.center

	
property Round.center

	center of this round, as a null vector

clifford.cga.Round.center_down

	
property Round.center_down

	center of this round, as a down-projected vector (in I_base)

(but still in cga’s layout)

clifford.cga.Round.dim

	
property Round.dim

	dimension of this round

clifford.cga.Round.dual

	
property Round.dual

	self.mv* self.layout.I

clifford.cga.Round.radius

	
property Round.radius

	radius of the round (a float)

clifford.cga.Round.__init__

	
Round.__init__(cga, *args) → None [https://docs.python.org/3/library/constants.html#None][source]

	Initialize self. See help(type(self)) for accurate signature.

clifford.cga.Round.from_center_radius

	
Round.from_center_radius(center, radius)[source]

	construct a round from center/radius

clifford.cga.Round.inverted

	
Round.inverted() → clifford._multivector.MultiVector

	inverted version of this thing.

self -> ep*self*ep

where ep is the positive added basis vector

clifford.cga.Round.involuted

	
Round.involuted() → clifford._multivector.MultiVector

	inverted version of this thing.

self -> E0*self*E0

where E0 is the added minkowski bivector

clifford.cga.Rotation

	
class clifford.cga.Rotation(cga, *args)[source]

	A Rotation

Can be constructed from a generator, rotor, or none

	Parameters

	args ([none, clifford.Multivector]) – if none, a random translation will be generated
several types of Multivectors can be used:

	bivector - interpreted as the generator

	existing translation rotor

Examples

>>> cga = CGA(3)
>>> locals().update(cga.blades)
>>> R = cga.rotation() # from None
>>> R = cga.rotation(e12+e23) # from bivector
>>> R = cga.rotation(R.mv) # from bivector

Methods

	__init__

	Initialize self.

	inverted

	inverted version of this thing.

	involuted

	inverted version of this thing.

clifford.cga.Rotation.__init__

	
Rotation.__init__(cga, *args) → None [https://docs.python.org/3/library/constants.html#None][source]

	Initialize self. See help(type(self)) for accurate signature.

clifford.cga.Rotation.inverted

	
Rotation.inverted() → clifford._multivector.MultiVector

	inverted version of this thing.

self -> ep*self*ep

where ep is the positive added basis vector

clifford.cga.Rotation.involuted

	
Rotation.involuted() → clifford._multivector.MultiVector

	inverted version of this thing.

self -> E0*self*E0

where E0 is the added minkowski bivector

clifford.cga.Dilation

	
class clifford.cga.Dilation(cga, *args)[source]

	A global dilation

	Parameters

	args ([none, number]) – if none, a random dilation will be generated
if a number, dilation of given amount

Examples

>>> cga = CGA(3)
>>> D = cga.dilation() # from none
>>> D = cga.dilation(.4) # from number

Methods

	__init__

	Initialize self.

	inverted

	inverted version of this thing.

	involuted

	inverted version of this thing.

clifford.cga.Dilation.__init__

	
Dilation.__init__(cga, *args) → None [https://docs.python.org/3/library/constants.html#None][source]

	Initialize self. See help(type(self)) for accurate signature.

clifford.cga.Dilation.inverted

	
Dilation.inverted() → clifford._multivector.MultiVector

	inverted version of this thing.

self -> ep*self*ep

where ep is the positive added basis vector

clifford.cga.Dilation.involuted

	
Dilation.involuted() → clifford._multivector.MultiVector

	inverted version of this thing.

self -> E0*self*E0

where E0 is the added minkowski bivector

clifford.cga.Translation

	
class clifford.cga.Translation(cga, *args)[source]

	A Translation

Can be constructed from a vector in base space or a null
vector, or nothing.

	Parameters

	args ([none, clifford.Multivector]) – if none, a random translation will be generated
several types of Multivectors can be used:

	base vector - vector in base space

	null vector

	existing translation rotor

Examples

>>> cga = CGA(3)
>>> locals().update(cga.blades)
>>> T = cga.translation() # from None
>>> T = cga.translation(e1+e2) # from base vector
>>> T = cga.translation(cga.up(e1+e2)) # from null vector
>>> T = cga.translation(T.mv) # from existing translation rotor

Methods

	__init__

	Initialize self.

	inverted

	inverted version of this thing.

	involuted

	inverted version of this thing.

clifford.cga.Translation.__init__

	
Translation.__init__(cga, *args) → None [https://docs.python.org/3/library/constants.html#None][source]

	Initialize self. See help(type(self)) for accurate signature.

clifford.cga.Translation.inverted

	
Translation.inverted() → clifford._multivector.MultiVector

	inverted version of this thing.

self -> ep*self*ep

where ep is the positive added basis vector

clifford.cga.Translation.involuted

	
Translation.involuted() → clifford._multivector.MultiVector

	inverted version of this thing.

self -> E0*self*E0

where E0 is the added minkowski bivector

clifford.cga.Transversion

	
class clifford.cga.Transversion(cga, *args)[source]

	A Transversion

A transversion is a combination of an inversion-translation-inversion,
or in other words an inverted translation operator. This inherits
from Translation

Can be constructed from a vector in base space or a null
vector, or nothing.

	Parameters

	args ([none, clifford.Multivector]) – if none, a random transversion will be generated
several types of Multivectors can be used:

	base vector - vector in base space

	null vector

	existing transversion rotor

Examples

>>> cga = CGA(3)
>>> locals().update(cga.blades)
>>> K = cga.transversion() # from None
>>> K = cga.transversion(e1+e2) # from base vector
>>> K = cga.transversion(cga.up(e1+e2)) # from null vector
>>> T = cga.translation()
>>> K = cga.transversion(T.mv) # from existing translation rotor

Methods

	__init__

	Initialize self.

	inverted

	inverted version of this thing.

	involuted

	inverted version of this thing.

clifford.cga.Transversion.__init__

	
Transversion.__init__(cga, *args) → None [https://docs.python.org/3/library/constants.html#None][source]

	Initialize self. See help(type(self)) for accurate signature.

clifford.cga.Transversion.inverted

	
Transversion.inverted() → clifford._multivector.MultiVector

	inverted version of this thing.

self -> ep*self*ep

where ep is the positive added basis vector

clifford.cga.Transversion.involuted

	
Transversion.involuted() → clifford._multivector.MultiVector

	inverted version of this thing.

self -> E0*self*E0

where E0 is the added minkowski bivector

clifford.cga.CGAThing

	
class clifford.cga.CGAThing(cga: clifford.cga.CGA)[source]

	base class for cga objects and operators.

maps versor product to __call__.

Methods

	__init__

	Initialize self.

	inverted

	inverted version of this thing.

	involuted

	inverted version of this thing.

clifford.cga.CGAThing.__init__

	
CGAThing.__init__(cga: clifford.cga.CGA) → None [https://docs.python.org/3/library/constants.html#None][source]

	Initialize self. See help(type(self)) for accurate signature.

clifford.cga.CGAThing.inverted

	
CGAThing.inverted() → clifford._multivector.MultiVector[source]

	inverted version of this thing.

self -> ep*self*ep

where ep is the positive added basis vector

clifford.cga.CGAThing.involuted

	
CGAThing.involuted() → clifford._multivector.MultiVector[source]

	inverted version of this thing.

self -> E0*self*E0

where E0 is the added minkowski bivector

tools (clifford.tools)

Algorithms and tools of various kinds.

Tools for specific ga’s

	g3

	Tools for 3DGA (g3)

	g3c

	Tools for 3DCGA (g3c)

Classifying conformal GAs

	classify

	Tools for interpreting conformal blades

Determining Rotors From Frame Pairs or Orthogonal Matrices

Given two frames that are related by a orthogonal transform, we seek a rotor
which enacts the transform. Details of the mathematics and psuedo-code used the
create the algorithms below can be found at Allan Cortzen’s website.

http://ctz.dk/geometric-algebra/frames-to-versor-algorithm/

There are also some helper functions which can be used to translate matrices
into GA frames, so an orthogonal (or complex unitary) matrix can be directly
translated into a Versor.

	orthoFrames2Versor(B[, A, delta, eps, det, …])

	Determines versor for two frames related by an orthogonal transform

	orthoMat2Versor(A[, eps, layout, is_complex])

	Translates an orthogonal (or unitary) matrix to a Versor

	mat2Frame(A[, layout, is_complex])

	Translates a (possibly complex) matrix into a real vector frame

clifford.tools.g3

Tools for 3DGA (g3)

3DGA Tools

Rotation Conversion Methods

	quaternion_to_rotor(quaternion)

	Converts a quaternion into a pure rotation rotor

	rotor_to_quaternion(R)

	Converts a pure rotation rotor into a quaternion

	quaternion_to_matrix(q)

	Converts a quaternion into a rotation matrix

	rotation_matrix_to_quaternion(a)

	Converts a rotation matrix into a quaternion

Generation Methods

	random_unit_vector()

	Creates a random unit vector

	random_euc_mv([l_max])

	Creates a random vector normally distributed with length l_max

	generate_rotation_rotor(theta, euc_vector_m, …)

	Generates a rotation of angle theta in the m, n plane

	random_rotation_rotor([max_angle])

	Creates a random rotation rotor

Misc

	angle_between_vectors(v1, v2)

	Returns the angle between two conformal vectors

	np_to_euc_mv(np_in)

	Converts a 3d numpy vector to a 3d GA point

	euc_mv_to_np(euc_point)

	Converts a 3d GA point to a 3d numpy vector

	euc_cross_prod(euc_a, euc_b)

	Implements the cross product in GA

	rotor_vector_to_vector(v1, v2)

	Creates a rotor that takes one vector into another

	correlation_matrix(u_list, v_list)

	Creates a correlation matrix between vector lists

	GA_SVD(u_list, v_list)

	Does SVD on a pair of GA vectors

	rotation_matrix_align_vecs(u_list, v_list)

	Returns the rotation matrix that aligns the set of vectors u and v

	rotor_align_vecs(u_list, v_list)

	Returns the rotation rotor that aligns the set of vectors u and v

clifford.tools.g3.quaternion_to_rotor

	
clifford.tools.g3.quaternion_to_rotor(quaternion)[source]

	Converts a quaternion into a pure rotation rotor

clifford.tools.g3.rotor_to_quaternion

	
clifford.tools.g3.rotor_to_quaternion(R)[source]

	Converts a pure rotation rotor into a quaternion

clifford.tools.g3.quaternion_to_matrix

	
clifford.tools.g3.quaternion_to_matrix(q)[source]

	Converts a quaternion into a rotation matrix

clifford.tools.g3.rotation_matrix_to_quaternion

	
clifford.tools.g3.rotation_matrix_to_quaternion(a)[source]

	Converts a rotation matrix into a quaternion

clifford.tools.g3.random_unit_vector

	
clifford.tools.g3.random_unit_vector()[source]

	Creates a random unit vector

clifford.tools.g3.random_euc_mv

	
clifford.tools.g3.random_euc_mv(l_max=10)[source]

	Creates a random vector normally distributed with length l_max

clifford.tools.g3.generate_rotation_rotor

	
clifford.tools.g3.generate_rotation_rotor(theta, euc_vector_m, euc_vector_n)[source]

	Generates a rotation of angle theta in the m, n plane

clifford.tools.g3.random_rotation_rotor

	
clifford.tools.g3.random_rotation_rotor(max_angle=3.141592653589793)[source]

	Creates a random rotation rotor

clifford.tools.g3.angle_between_vectors

	
clifford.tools.g3.angle_between_vectors(v1, v2)[source]

	Returns the angle between two conformal vectors

clifford.tools.g3.np_to_euc_mv

	
clifford.tools.g3.np_to_euc_mv(np_in)[source]

	Converts a 3d numpy vector to a 3d GA point

clifford.tools.g3.euc_mv_to_np

	
clifford.tools.g3.euc_mv_to_np(euc_point)[source]

	Converts a 3d GA point to a 3d numpy vector

clifford.tools.g3.euc_cross_prod

	
clifford.tools.g3.euc_cross_prod(euc_a, euc_b)[source]

	Implements the cross product in GA

clifford.tools.g3.rotor_vector_to_vector

	
clifford.tools.g3.rotor_vector_to_vector(v1, v2)[source]

	Creates a rotor that takes one vector into another

clifford.tools.g3.correlation_matrix

	
clifford.tools.g3.correlation_matrix(u_list, v_list)[source]

	Creates a correlation matrix between vector lists

clifford.tools.g3.GA_SVD

	
clifford.tools.g3.GA_SVD(u_list, v_list)[source]

	Does SVD on a pair of GA vectors

clifford.tools.g3.rotation_matrix_align_vecs

	
clifford.tools.g3.rotation_matrix_align_vecs(u_list, v_list)[source]

	Returns the rotation matrix that aligns the set of vectors u and v

clifford.tools.g3.rotor_align_vecs

	
clifford.tools.g3.rotor_align_vecs(u_list, v_list)[source]

	Returns the rotation rotor that aligns the set of vectors u and v

clifford.tools.g3c

Tools for 3DCGA (g3c)

3DCGA Tools

Generation Methods

	random_bivector()

	Creates a random bivector on the form described by R.

	standard_point_pair_at_origin()

	Creates a standard point pair at the origin

	random_point_pair_at_origin()

	Creates a random point pair bivector object at the origin

	random_point_pair()

	Creates a random point pair bivector object

	standard_line_at_origin()

	Creates a standard line at the origin

	random_line_at_origin()

	Creates a random line at the origin

	random_line()

	Creates a random line

	random_circle_at_origin()

	Creates a random circle at the origin

	random_circle()

	Creates a random circle

	random_sphere_at_origin()

	Creates a random sphere at the origin

	random_sphere()

	Creates a random sphere

	random_plane_at_origin()

	Creates a random plane at the origin

	random_plane()

	Creates a random plane

	generate_n_clusters(object_generator, …)

	Creates n_clusters of random objects

	generate_random_object_cluster(n_objects, …)

	Creates a cluster of random objects

	random_translation_rotor([maximum_translation])

	generate a random translation rotor

	random_rotation_translation_rotor([…])

	generate a random combined rotation and translation rotor

	random_conformal_point([l_max])

	Creates a random conformal point

	generate_dilation_rotor(scale)

	Generates a rotor that performs dilation about the origin

	generate_translation_rotor(euc_vector_a)

	Generates a rotor that translates objects along the euclidean vector euc_vector_a

Geometry Methods

	intersect_line_and_plane_to_point(line, plane)

	Returns the point at the intersection of a line and plane If there is no intersection it returns None

	val_intersect_line_and_plane_to_point(…)

	Returns the point at the intersection of a line and plane

	quaternion_and_vector_to_rotor(quaternion, …)

	Takes in a quaternion and a vector and returns a conformal rotor that implements the transformation

	get_center_from_sphere(sphere)

	Returns the conformal point at the centre of a sphere by reflecting the point at infinity

	get_radius_from_sphere(sphere)

	Returns the radius of a sphere

	point_pair_to_end_points(T)

	Extracts the end points of a point pair bivector

	val_point_pair_to_end_points(T)

	Extracts the end points of a point pair bivector

	get_circle_in_euc(circle)

	Extracts all the normal stuff for a circle

	circle_to_sphere(C)

	returns the sphere for which the input circle is the perimeter

	line_to_point_and_direction(line)

	converts a line to the conformal nearest point to the origin and a euc direction vector in direction of the line

	get_plane_origin_distance(plane)

	Get the distance between a given plane and the origin

	get_plane_normal(plane)

	Get the normal to the plane

	get_nearest_plane_point(plane)

	Get the nearest point to the origin on the plane

	val_convert_2D_polar_line_to_conformal_line(…)

	Converts a 2D polar line to a conformal line

	convert_2D_polar_line_to_conformal_line(rho, …)

	Converts a 2D polar line to a conformal line

	val_convert_2D_point_to_conformal(x, y)

	Convert a 2D point to conformal

	convert_2D_point_to_conformal(x, y)

	Convert a 2D point to conformal

	val_distance_point_to_line(point, line)

	Returns the euclidean distance between a point and a line

	distance_polar_line_to_euc_point_2d(rho, …)

	Return the distance between a polar line and a euclidean point in 2D

	midpoint_between_lines(L1, L2)

	Gets the point that is maximally close to both lines Hadfield and Lasenby AGACSE2018

	val_midpoint_between_lines(L1_val, L2_val)

	Gets the point that is maximally close to both lines Hadfield and Lasenby AGACSE2018

	midpoint_of_line_cluster(line_cluster)

	Gets a center point of a line cluster Hadfield and Lasenby AGACSE2018

	val_midpoint_of_line_cluster(array_line_cluster)

	Gets a center point of a line cluster Hadfield and Lasenby AGACSE2018

	val_midpoint_of_line_cluster_grad(…)

	Gets an approximate center point of a line cluster Hadfield and Lasenby AGACSE2018

	get_line_intersection(L3, Ldd)

	Gets the point of intersection of two orthogonal lines that meet Xdd = Ldd*no*Ldd + no Xddd = L3*Xdd*L3 Pd = 0.5*(Xdd+Xddd) P = -(Pd*ninf*Pd)(1)/(2*(Pd|einf)**2)[0]

	val_get_line_intersection(L3_val, Ldd_val)

	Gets the point of intersection of two orthogonal lines that meet Xdd = Ldd*no*Ldd + no Xddd = L3*Xdd*L3 Pd = 0.5*(Xdd+Xddd) P = -(Pd*ninf*Pd)(1)/(2*(Pd|einf)**2)[0]

	project_points_to_plane(point_list, plane)

	Takes a load of points and projects them onto a plane

	project_points_to_sphere(point_list, sphere)

	Takes a load of points and projects them onto a sphere

	project_points_to_circle(point_list, circle)

	Takes a load of point and projects them onto a circle The closest flag determines if it should be the closest or furthest point on the circle

	project_points_to_line(point_list, line)

	Takes a load of points and projects them onto a line

	iterative_closest_points_on_circles(C1, C2)

	Given two circles C1 and C2 this calculates the closest points on each of them to the other

	closest_point_on_line_from_circle(C, L[, eps])

	Returns the point on the line L that is closest to the circle C Uses the algorithm described in Appendix A of Andreas Aristidou’s PhD thesis

	closest_point_on_circle_from_line(C, L[, eps])

	Returns the point on the circle C that is closest to the line L Uses the algorithm described in Appendix A of Andreas Aristidou’s PhD thesis

	iterative_closest_points_circle_line(C, L[, …])

	Given a circle C and line L this calculates the closest points on each of them to the other.

	iterative_furthest_points_on_circles(C1, C2)

	Given two circles C1 and C2 this calculates the closest points on each of them to the other

	sphere_beyond_plane(sphere, plane)

	Check if the sphere is fully beyond the plane in the direction of the plane normal

	sphere_behind_plane(sphere, plane)

	Check if the sphere is fully behind the plane in the direction of the plane normal, ie the opposite of sphere_beyond_plane

Misc

	meet_val(a_val, b_val)

	The meet algorithm as described in “A Covariant Approach to Geometry” I5*((I5*A) ^ (I5*B))

	meet(A, B)

	The meet algorithm as described in “A Covariant Approach to Geometry” I5*((I5*A) ^ (I5*B))

	normalise_n_minus_1(mv)

	Normalises a conformal point so that it has an inner product of -1 with einf

	val_normalise_n_minus_1(mv_val)

	Normalises a conformal point so that it has an inner product of -1 with einf

	val_apply_rotor(mv_val, rotor_val)

	Applies rotor to multivector in a fast way - JITTED

	apply_rotor(mv_in, rotor)

	Applies rotor to multivector in a fast way

	val_apply_rotor_inv(mv_val, rotor_val, …)

	Applies rotor to multivector in a fast way takes pre computed adjoint

	apply_rotor_inv(mv_in, rotor, rotor_inv)

	Applies rotor to multivector in a fast way takes pre computed adjoint

	euc_dist(conf_mv_a, conf_mv_b)

	Returns the distance between two conformal points

	mult_with_ninf(mv)

	Convenience function for multiplication with ninf

	val_norm(mv_val)

	Returns sqrt(abs(~A*A))

	norm(mv)

	Returns sqrt(abs(~A*A))

	val_normalised(mv_val)

	Returns A/sqrt(abs(~A*A))

	normalised(mv)

	fast version of the normal() function

	val_up(mv_val)

	Fast jitted up mapping

	fast_up(mv)

	Fast up mapping

	val_normalInv(mv_val)

	A fast, jitted version of normalInv

	val_homo(mv_val)

	A fast, jitted version of homo()

	val_down(mv_val)

	A fast, jitted version of down()

	fast_down(mv)

	A fast version of down()

	dual_func(a_val)

	Fast dual

	fast_dual(a)

	Fast dual

	disturb_object(mv_object[, …])

	Disturbs an object by a random rotor

	project_val(val, grade)

	fast grade projection

	get_line_reflection_matrix(lines[, n_power])

	Generates the matrix that sums the reflection of a point in many lines

	val_get_line_reflection_matrix(line_array, …)

	Generates the matrix that sums the reflection of a point in many lines

	val_truncated_get_line_reflection_matrix(…)

	Generates the truncated matrix that sums the reflection of a point in many lines

	interpret_multivector_as_object(mv)

	Takes an input multivector and returns what kind of object it is

	normalise_TR_to_unit_T(TR)

	Takes in a TR rotor extracts the R and T normalises the T to unit displacement magnitude rebuilds the TR rotor with the new displacement rotor returns the new TR and the original length of the T rotor

	scale_TR_translation(TR, scale)

	Takes in a TR rotor and a scale extracts the R and T scales the T displacement magnitude by scale rebuilds the TR rotor with the new displacement rotor returns the new TR rotor

	val_unsign_sphere(S)

	Normalises the sign of a sphere

Root Finding

	dorst_norm_val(sigma_val)

	Square Root of Rotors - Implements the norm of a rotor

	check_sigma_for_positive_root_val(sigma_val)

	Square Root of Rotors - Checks for a positive root

	check_sigma_for_positive_root(sigma)

	Square Root of Rotors - Checks for a positive root

	check_sigma_for_negative_root_val(sigma_value)

	Square Root of Rotors - Checks for a negative root

	check_sigma_for_negative_root(sigma)

	Square Root of Rotors - Checks for a negative root

	check_infinite_roots_val(sigma_value)

	Square Root of Rotors - Checks for a infinite roots

	check_infinite_roots(sigma)

	Square Root of Rotors - Checks for a infinite roots

	positive_root_val(sigma_val)

	Square Root of Rotors - Evaluates the positive root Square Root of Rotors - Evaluates the positive root

	negative_root_val(sigma_val)

	Square Root of Rotors - Evaluates the positive root

	positive_root(sigma)

	Square Root of Rotors - Evaluates the positive root

	negative_root(sigma)

	Square Root of Rotors - Evaluates the negative root

	general_root_val(sigma_value)

	Square Root and Logarithm of Rotors in 3D Conformal Geometric Algebra Using Polar Decomposition Leo Dorst and Robert Valkenburg

	general_root(sigma)

	The general case of the root of a grade 0, 4 multivector

	val_annihilate_k(K_val, C_val)

	Removes K from C = KX via (K[0] - K[4])*C

	annihilate_k(K, C)

	Removes K from C = KX via (K[0] - K[4])*C

	pos_twiddle_root_val(C_value)

	Square Root and Logarithm of Rotors in 3D Conformal Geometric Algebra Using Polar Decomposition Leo Dorst and Robert Valkenburg

	neg_twiddle_root_val(C_value)

	Square Root and Logarithm of Rotors in 3D Conformal Geometric Algebra Using Polar Decomposition Leo Dorst and Robert Valkenburg

	pos_twiddle_root(C)

	Square Root and Logarithm of Rotors in 3D Conformal Geometric Algebra Using Polar Decomposition Leo Dorst and Robert Valkenburg

	neg_twiddle_root(C)

	Square Root and Logarithm of Rotors in 3D Conformal Geometric Algebra Using Polar Decomposition Leo Dorst and Robert Valkenburg

	square_roots_of_rotor(R)

	Square Root and Logarithm of Rotors in 3D Conformal Geometric Algebra Using Polar Decomposition Leo Dorst and Robert Valkenburg

	n_th_rotor_root(R, n)

	Takes the n_th root of rotor R n must be a power of 2

	interp_objects_root(C1, C2, alpha)

	Hadfield and Lasenby, Direct Linear Interpolation of Geometric Objects, AGACSE2018 Directly linearly interpolates conformal objects Return a valid object from the addition result C

	general_object_interpolation(…[, kind])

	Hadfield and Lasenby, Direct Linear Interpolation of Geometric Objects, AGACSE2018 This is a general interpolation through the

	average_objects(obj_list[, weights, …])

	Hadfield and Lasenby, Direct Linear Interpolation of Geometric Objects, AGACSE2018 Directly averages conformal objects Return a valid object from the addition result C

	val_average_objects_with_weights(obj_array, …)

	Hadfield and Lasenby, Direct Linear Interpolation of Geometric Objects, AGACSE2018 Directly averages conformal objects Return a valid object from the addition result C

	val_average_objects(obj_array)

	Hadfield and Lasenby, Direct Linear Interpolation of Geometric Objects, AGACSE2018 Directly averages conformal objects Return a valid object from the addition result C

	rotor_between_objects(X1, X2)

	Lasenby and Hadfield AGACSE2018 For any two conformal objects X1 and X2 this returns a rotor that takes X1 to X2 Return a valid object from the addition result 1 + gamma*X2X1

	val_rotor_between_objects_root(X1, X2)

	Lasenby and Hadfield AGACSE2018 For any two conformal objects X1 and X2 this returns a rotor that takes X1 to X2 Uses the square root of rotors for efficiency and numerical stability

	val_rotor_between_objects_explicit(X1, X2)

	Lasenby and Hadfield AGACSE2018 For any two conformal objects X1 and X2 this returns a rotor that takes X1 to X2

	calculate_S_over_mu(X1, X2)

	Lasenby and Hadfield AGACSE2018 For any two conformal objects X1 and X2 this returns a factor that corrects the X1 + X2 back to a blade

	val_rotor_between_lines(L1_val, L2_val)

	Implements a very optimised rotor line to line extraction

	rotor_between_lines(L1, L2)

	return the rotor between two lines

	rotor_between_planes(P1, P2)

	return the rotor between two planes

	val_rotor_rotor_between_planes(P1_val, P2_val)

	return the rotor between two planes

Submodules

	object_fitting

	Tools for fitting geometric primitives to point clouds

clifford.tools.g3c.random_bivector

	
clifford.tools.g3c.random_bivector()[source]

	Creates a random bivector on the form described by R. Wareham in
Mesh Vertex Pose and Position Interpolation using Geometric Algebra.
$$ B = ab + c*n_{inf}$$ where $a, b, c in mathcal(R)^3$

clifford.tools.g3c.standard_point_pair_at_origin

	
clifford.tools.g3c.standard_point_pair_at_origin()[source]

	Creates a standard point pair at the origin

clifford.tools.g3c.random_point_pair_at_origin

	
clifford.tools.g3c.random_point_pair_at_origin()[source]

	Creates a random point pair bivector object at the origin

clifford.tools.g3c.random_point_pair

	
clifford.tools.g3c.random_point_pair()[source]

	Creates a random point pair bivector object

clifford.tools.g3c.standard_line_at_origin

	
clifford.tools.g3c.standard_line_at_origin()[source]

	Creates a standard line at the origin

clifford.tools.g3c.random_line_at_origin

	
clifford.tools.g3c.random_line_at_origin()[source]

	Creates a random line at the origin

clifford.tools.g3c.random_line

	
clifford.tools.g3c.random_line()[source]

	Creates a random line

clifford.tools.g3c.random_circle_at_origin

	
clifford.tools.g3c.random_circle_at_origin()[source]

	Creates a random circle at the origin

clifford.tools.g3c.random_circle

	
clifford.tools.g3c.random_circle()[source]

	Creates a random circle

clifford.tools.g3c.random_sphere_at_origin

	
clifford.tools.g3c.random_sphere_at_origin()[source]

	Creates a random sphere at the origin

clifford.tools.g3c.random_sphere

	
clifford.tools.g3c.random_sphere()[source]

	Creates a random sphere

clifford.tools.g3c.random_plane_at_origin

	
clifford.tools.g3c.random_plane_at_origin()[source]

	Creates a random plane at the origin

clifford.tools.g3c.random_plane

	
clifford.tools.g3c.random_plane()[source]

	Creates a random plane

clifford.tools.g3c.generate_n_clusters

	
clifford.tools.g3c.generate_n_clusters(object_generator, n_clusters, n_objects_per_cluster)[source]

	Creates n_clusters of random objects

clifford.tools.g3c.generate_random_object_cluster

	
clifford.tools.g3c.generate_random_object_cluster(n_objects, object_generator, max_cluster_trans=1.0, max_cluster_rot=0.39269908169872414)[source]

	Creates a cluster of random objects

clifford.tools.g3c.random_translation_rotor

	
clifford.tools.g3c.random_translation_rotor(maximum_translation=10.0)[source]

	generate a random translation rotor

clifford.tools.g3c.random_rotation_translation_rotor

	
clifford.tools.g3c.random_rotation_translation_rotor(maximum_translation=10.0, maximum_angle=3.141592653589793)[source]

	generate a random combined rotation and translation rotor

clifford.tools.g3c.random_conformal_point

	
clifford.tools.g3c.random_conformal_point(l_max=10)[source]

	Creates a random conformal point

clifford.tools.g3c.generate_dilation_rotor

	
clifford.tools.g3c.generate_dilation_rotor(scale)[source]

	Generates a rotor that performs dilation about the origin

clifford.tools.g3c.generate_translation_rotor

	
clifford.tools.g3c.generate_translation_rotor(euc_vector_a)[source]

	Generates a rotor that translates objects along the euclidean vector euc_vector_a

clifford.tools.g3c.intersect_line_and_plane_to_point

	
clifford.tools.g3c.intersect_line_and_plane_to_point(line, plane)[source]

	Returns the point at the intersection of a line and plane
If there is no intersection it returns None

clifford.tools.g3c.val_intersect_line_and_plane_to_point

	
clifford.tools.g3c.val_intersect_line_and_plane_to_point(line_val, plane_val)[source]

	Returns the point at the intersection of a line and plane

clifford.tools.g3c.quaternion_and_vector_to_rotor

	
clifford.tools.g3c.quaternion_and_vector_to_rotor(quaternion, vector)[source]

	Takes in a quaternion and a vector and returns a conformal rotor that
implements the transformation

clifford.tools.g3c.get_center_from_sphere

	
clifford.tools.g3c.get_center_from_sphere(sphere)[source]

	Returns the conformal point at the centre of a sphere by reflecting the
point at infinity

clifford.tools.g3c.get_radius_from_sphere

	
clifford.tools.g3c.get_radius_from_sphere(sphere)[source]

	Returns the radius of a sphere

clifford.tools.g3c.point_pair_to_end_points

	
clifford.tools.g3c.point_pair_to_end_points(T)[source]

	Extracts the end points of a point pair bivector

clifford.tools.g3c.val_point_pair_to_end_points

	
clifford.tools.g3c.val_point_pair_to_end_points(T)[source]

	Extracts the end points of a point pair bivector

clifford.tools.g3c.get_circle_in_euc

	
clifford.tools.g3c.get_circle_in_euc(circle)[source]

	Extracts all the normal stuff for a circle

clifford.tools.g3c.circle_to_sphere

	
clifford.tools.g3c.circle_to_sphere(C)[source]

	returns the sphere for which the input circle is the perimeter

clifford.tools.g3c.line_to_point_and_direction

	
clifford.tools.g3c.line_to_point_and_direction(line)[source]

	converts a line to the conformal nearest point to the origin and a
euc direction vector in direction of the line

clifford.tools.g3c.get_plane_origin_distance

	
clifford.tools.g3c.get_plane_origin_distance(plane)[source]

	Get the distance between a given plane and the origin

clifford.tools.g3c.get_plane_normal

	
clifford.tools.g3c.get_plane_normal(plane)[source]

	Get the normal to the plane

clifford.tools.g3c.get_nearest_plane_point

	
clifford.tools.g3c.get_nearest_plane_point(plane)[source]

	Get the nearest point to the origin on the plane

clifford.tools.g3c.val_convert_2D_polar_line_to_conformal_line

	
clifford.tools.g3c.val_convert_2D_polar_line_to_conformal_line(rho, theta)[source]

	Converts a 2D polar line to a conformal line

clifford.tools.g3c.convert_2D_polar_line_to_conformal_line

	
clifford.tools.g3c.convert_2D_polar_line_to_conformal_line(rho, theta)[source]

	Converts a 2D polar line to a conformal line

clifford.tools.g3c.val_convert_2D_point_to_conformal

	
clifford.tools.g3c.val_convert_2D_point_to_conformal(x, y)[source]

	Convert a 2D point to conformal

clifford.tools.g3c.convert_2D_point_to_conformal

	
clifford.tools.g3c.convert_2D_point_to_conformal(x, y)[source]

	Convert a 2D point to conformal

clifford.tools.g3c.val_distance_point_to_line

	
clifford.tools.g3c.val_distance_point_to_line(point, line)[source]

	Returns the euclidean distance between a point and a line

clifford.tools.g3c.distance_polar_line_to_euc_point_2d

	
clifford.tools.g3c.distance_polar_line_to_euc_point_2d(rho, theta, x, y)[source]

	Return the distance between a polar line and a euclidean point in 2D

clifford.tools.g3c.midpoint_between_lines

	
clifford.tools.g3c.midpoint_between_lines(L1, L2)[source]

	Gets the point that is maximally close to both lines
Hadfield and Lasenby AGACSE2018

clifford.tools.g3c.val_midpoint_between_lines

	
clifford.tools.g3c.val_midpoint_between_lines(L1_val, L2_val)[source]

	Gets the point that is maximally close to both lines
Hadfield and Lasenby AGACSE2018

clifford.tools.g3c.midpoint_of_line_cluster

	
clifford.tools.g3c.midpoint_of_line_cluster(line_cluster)[source]

	Gets a center point of a line cluster
Hadfield and Lasenby AGACSE2018

clifford.tools.g3c.val_midpoint_of_line_cluster

	
clifford.tools.g3c.val_midpoint_of_line_cluster(array_line_cluster)[source]

	Gets a center point of a line cluster
Hadfield and Lasenby AGACSE2018

clifford.tools.g3c.val_midpoint_of_line_cluster_grad

	
clifford.tools.g3c.val_midpoint_of_line_cluster_grad(array_line_cluster)[source]

	Gets an approximate center point of a line cluster
Hadfield and Lasenby AGACSE2018

clifford.tools.g3c.get_line_intersection

	
clifford.tools.g3c.get_line_intersection(L3, Ldd)[source]

	Gets the point of intersection of two orthogonal lines that meet
Xdd = Ldd*no*Ldd + no
Xddd = L3*Xdd*L3
Pd = 0.5*(Xdd+Xddd)
P = -(Pd*ninf*Pd)(1)/(2*(Pd|einf)**2)[0]

clifford.tools.g3c.val_get_line_intersection

	
clifford.tools.g3c.val_get_line_intersection(L3_val, Ldd_val)[source]

	Gets the point of intersection of two orthogonal lines that meet
Xdd = Ldd*no*Ldd + no
Xddd = L3*Xdd*L3
Pd = 0.5*(Xdd+Xddd)
P = -(Pd*ninf*Pd)(1)/(2*(Pd|einf)**2)[0]

clifford.tools.g3c.project_points_to_plane

	
clifford.tools.g3c.project_points_to_plane(point_list, plane)[source]

	Takes a load of points and projects them onto a plane

clifford.tools.g3c.project_points_to_sphere

	
clifford.tools.g3c.project_points_to_sphere(point_list, sphere, closest=True)[source]

	Takes a load of points and projects them onto a sphere

clifford.tools.g3c.project_points_to_circle

	
clifford.tools.g3c.project_points_to_circle(point_list, circle, closest=True)[source]

	Takes a load of point and projects them onto a circle
The closest flag determines if it should be the closest or furthest point on the circle

clifford.tools.g3c.project_points_to_line

	
clifford.tools.g3c.project_points_to_line(point_list, line)[source]

	Takes a load of points and projects them onto a line

clifford.tools.g3c.iterative_closest_points_on_circles

	
clifford.tools.g3c.iterative_closest_points_on_circles(C1, C2, niterations=20)[source]

	Given two circles C1 and C2 this calculates the closest
points on each of them to the other

Changed in version 1.3: Renamed from closest_points_on_circles

clifford.tools.g3c.closest_point_on_line_from_circle

	
clifford.tools.g3c.closest_point_on_line_from_circle(C, L, eps=1e-06)[source]

	Returns the point on the line L that is closest to the circle C
Uses the algorithm described in Appendix A of Andreas Aristidou’s PhD thesis

New in version 1.3.

clifford.tools.g3c.closest_point_on_circle_from_line

	
clifford.tools.g3c.closest_point_on_circle_from_line(C, L, eps=1e-06)[source]

	Returns the point on the circle C that is closest to the line L
Uses the algorithm described in Appendix A of Andreas Aristidou’s PhD thesis

New in version 1.3.

clifford.tools.g3c.iterative_closest_points_circle_line

	
clifford.tools.g3c.iterative_closest_points_circle_line(C, L, niterations=20)[source]

	Given a circle C and line L this calculates the closest
points on each of them to the other.

This is an iterative algorithm based on heuristics
Nonetheless it appears to give results on par with
closest_point_on_circle_from_line().

Changed in version 1.3: Renamed from closest_points_circle_line

clifford.tools.g3c.iterative_furthest_points_on_circles

	
clifford.tools.g3c.iterative_furthest_points_on_circles(C1, C2, niterations=20)[source]

	Given two circles C1 and C2 this calculates the closest
points on each of them to the other

Changed in version 1.3: Renamed from furthest_points_on_circles

clifford.tools.g3c.sphere_beyond_plane

	
clifford.tools.g3c.sphere_beyond_plane(sphere, plane)[source]

	Check if the sphere is fully beyond the plane in the direction of
the plane normal

clifford.tools.g3c.sphere_behind_plane

	
clifford.tools.g3c.sphere_behind_plane(sphere, plane)[source]

	Check if the sphere is fully behind the plane in the direction of
the plane normal, ie the opposite of sphere_beyond_plane

clifford.tools.g3c.meet_val

	
clifford.tools.g3c.meet_val(a_val, b_val)[source]

	The meet algorithm as described in “A Covariant Approach to Geometry”
I5*((I5*A) ^ (I5*B))

clifford.tools.g3c.meet

	
clifford.tools.g3c.meet(A, B)[source]

	The meet algorithm as described in “A Covariant Approach to Geometry”
I5*((I5*A) ^ (I5*B))

clifford.tools.g3c.normalise_n_minus_1

	
clifford.tools.g3c.normalise_n_minus_1(mv)[source]

	Normalises a conformal point so that it has an inner product of -1 with einf

clifford.tools.g3c.val_normalise_n_minus_1

	
clifford.tools.g3c.val_normalise_n_minus_1(mv_val)[source]

	Normalises a conformal point so that it has an inner product of -1 with einf

clifford.tools.g3c.val_apply_rotor

	
clifford.tools.g3c.val_apply_rotor(mv_val, rotor_val)[source]

	Applies rotor to multivector in a fast way - JITTED

clifford.tools.g3c.apply_rotor

	
clifford.tools.g3c.apply_rotor(mv_in, rotor)[source]

	Applies rotor to multivector in a fast way

clifford.tools.g3c.val_apply_rotor_inv

	
clifford.tools.g3c.val_apply_rotor_inv(mv_val, rotor_val, rotor_val_inv)[source]

	Applies rotor to multivector in a fast way takes pre computed adjoint

clifford.tools.g3c.apply_rotor_inv

	
clifford.tools.g3c.apply_rotor_inv(mv_in, rotor, rotor_inv)[source]

	Applies rotor to multivector in a fast way takes pre computed adjoint

clifford.tools.g3c.euc_dist

	
clifford.tools.g3c.euc_dist(conf_mv_a, conf_mv_b)[source]

	Returns the distance between two conformal points

clifford.tools.g3c.mult_with_ninf

	
clifford.tools.g3c.mult_with_ninf(mv)[source]

	Convenience function for multiplication with ninf

clifford.tools.g3c.val_norm

	
clifford.tools.g3c.val_norm(mv_val)[source]

	Returns sqrt(abs(~A*A))

clifford.tools.g3c.norm

	
clifford.tools.g3c.norm(mv)[source]

	Returns sqrt(abs(~A*A))

clifford.tools.g3c.val_normalised

	
clifford.tools.g3c.val_normalised(mv_val)[source]

	Returns A/sqrt(abs(~A*A))

clifford.tools.g3c.normalised

	
clifford.tools.g3c.normalised(mv)[source]

	fast version of the normal() function

clifford.tools.g3c.val_up

	
clifford.tools.g3c.val_up(mv_val)[source]

	Fast jitted up mapping

clifford.tools.g3c.fast_up

	
clifford.tools.g3c.fast_up(mv)[source]

	Fast up mapping

clifford.tools.g3c.val_normalInv

	
clifford.tools.g3c.val_normalInv(mv_val)[source]

	A fast, jitted version of normalInv

clifford.tools.g3c.val_homo

	
clifford.tools.g3c.val_homo(mv_val)[source]

	A fast, jitted version of homo()

clifford.tools.g3c.val_down

	
clifford.tools.g3c.val_down(mv_val)[source]

	A fast, jitted version of down()

clifford.tools.g3c.fast_down

	
clifford.tools.g3c.fast_down(mv)[source]

	A fast version of down()

clifford.tools.g3c.dual_func

	
clifford.tools.g3c.dual_func(a_val)[source]

	Fast dual

clifford.tools.g3c.fast_dual

	
clifford.tools.g3c.fast_dual(a)[source]

	Fast dual

clifford.tools.g3c.disturb_object

	
clifford.tools.g3c.disturb_object(mv_object, maximum_translation=0.01, maximum_angle=0.01)[source]

	Disturbs an object by a random rotor

clifford.tools.g3c.project_val

	
clifford.tools.g3c.project_val(val, grade)[source]

	fast grade projection

clifford.tools.g3c.get_line_reflection_matrix

	
clifford.tools.g3c.get_line_reflection_matrix(lines, n_power=1)[source]

	Generates the matrix that sums the reflection of a point in many lines

clifford.tools.g3c.val_get_line_reflection_matrix

	
clifford.tools.g3c.val_get_line_reflection_matrix(line_array: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], n_power: int [https://docs.python.org/3/library/functions.html#int]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][source]

	Generates the matrix that sums the reflection of a point in many lines

clifford.tools.g3c.val_truncated_get_line_reflection_matrix

	
clifford.tools.g3c.val_truncated_get_line_reflection_matrix(line_array: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], n_power: int [https://docs.python.org/3/library/functions.html#int]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray][source]

	Generates the truncated matrix that sums the
reflection of a point in many lines

clifford.tools.g3c.interpret_multivector_as_object

	
clifford.tools.g3c.interpret_multivector_as_object(mv)[source]

	Takes an input multivector and returns what kind of object it is

-1 -> not a blade
0 -> a 1 vector but not a point
1 -> a euclidean point
2 -> a conformal point
3 -> a point pair
4 -> a circle
5 -> a line
6 -> a sphere
7 -> a plane

Similar to clifford.tools.classify.classify(), although that function
does a little more work in order to produce full characterizations.

clifford.tools.g3c.normalise_TR_to_unit_T

	
clifford.tools.g3c.normalise_TR_to_unit_T(TR)[source]

	Takes in a TR rotor
extracts the R and T
normalises the T to unit displacement magnitude
rebuilds the TR rotor with the new displacement rotor
returns the new TR and the original length of the T rotor

clifford.tools.g3c.scale_TR_translation

	
clifford.tools.g3c.scale_TR_translation(TR, scale)[source]

	Takes in a TR rotor and a scale
extracts the R and T
scales the T displacement magnitude by scale
rebuilds the TR rotor with the new displacement rotor
returns the new TR rotor

clifford.tools.g3c.val_unsign_sphere

	
clifford.tools.g3c.val_unsign_sphere(S)[source]

	Normalises the sign of a sphere

clifford.tools.g3c.dorst_norm_val

	
clifford.tools.g3c.dorst_norm_val(sigma_val)[source]

	Square Root of Rotors - Implements the norm of a rotor

clifford.tools.g3c.check_sigma_for_positive_root_val

	
clifford.tools.g3c.check_sigma_for_positive_root_val(sigma_val)[source]

	Square Root of Rotors - Checks for a positive root

clifford.tools.g3c.check_sigma_for_positive_root

	
clifford.tools.g3c.check_sigma_for_positive_root(sigma)[source]

	Square Root of Rotors - Checks for a positive root

clifford.tools.g3c.check_sigma_for_negative_root_val

	
clifford.tools.g3c.check_sigma_for_negative_root_val(sigma_value)[source]

	Square Root of Rotors - Checks for a negative root

clifford.tools.g3c.check_sigma_for_negative_root

	
clifford.tools.g3c.check_sigma_for_negative_root(sigma)[source]

	Square Root of Rotors - Checks for a negative root

clifford.tools.g3c.check_infinite_roots_val

	
clifford.tools.g3c.check_infinite_roots_val(sigma_value)[source]

	Square Root of Rotors - Checks for a infinite roots

clifford.tools.g3c.check_infinite_roots

	
clifford.tools.g3c.check_infinite_roots(sigma)[source]

	Square Root of Rotors - Checks for a infinite roots

clifford.tools.g3c.positive_root_val

	
clifford.tools.g3c.positive_root_val(sigma_val)[source]

	Square Root of Rotors - Evaluates the positive root
Square Root of Rotors - Evaluates the positive root

clifford.tools.g3c.negative_root_val

	
clifford.tools.g3c.negative_root_val(sigma_val)[source]

	Square Root of Rotors - Evaluates the positive root

clifford.tools.g3c.positive_root

	
clifford.tools.g3c.positive_root(sigma)[source]

	Square Root of Rotors - Evaluates the positive root

clifford.tools.g3c.negative_root

	
clifford.tools.g3c.negative_root(sigma)[source]

	Square Root of Rotors - Evaluates the negative root

clifford.tools.g3c.general_root_val

	
clifford.tools.g3c.general_root_val(sigma_value)[source]

	Square Root and Logarithm of Rotors
in 3D Conformal Geometric Algebra
Using Polar Decomposition
Leo Dorst and Robert Valkenburg

clifford.tools.g3c.general_root

	
clifford.tools.g3c.general_root(sigma)[source]

	The general case of the root of a grade 0, 4 multivector

clifford.tools.g3c.val_annihilate_k

	
clifford.tools.g3c.val_annihilate_k(K_val, C_val)[source]

	Removes K from C = KX via (K[0] - K[4])*C

clifford.tools.g3c.annihilate_k

	
clifford.tools.g3c.annihilate_k(K, C)[source]

	Removes K from C = KX via (K[0] - K[4])*C

clifford.tools.g3c.pos_twiddle_root_val

	
clifford.tools.g3c.pos_twiddle_root_val(C_value)[source]

	Square Root and Logarithm of Rotors
in 3D Conformal Geometric Algebra
Using Polar Decomposition
Leo Dorst and Robert Valkenburg

clifford.tools.g3c.neg_twiddle_root_val

	
clifford.tools.g3c.neg_twiddle_root_val(C_value)[source]

	Square Root and Logarithm of Rotors
in 3D Conformal Geometric Algebra
Using Polar Decomposition
Leo Dorst and Robert Valkenburg

clifford.tools.g3c.pos_twiddle_root

	
clifford.tools.g3c.pos_twiddle_root(C)[source]

	Square Root and Logarithm of Rotors
in 3D Conformal Geometric Algebra
Using Polar Decomposition
Leo Dorst and Robert Valkenburg

clifford.tools.g3c.neg_twiddle_root

	
clifford.tools.g3c.neg_twiddle_root(C)[source]

	Square Root and Logarithm of Rotors
in 3D Conformal Geometric Algebra
Using Polar Decomposition
Leo Dorst and Robert Valkenburg

clifford.tools.g3c.square_roots_of_rotor

	
clifford.tools.g3c.square_roots_of_rotor(R)[source]

	Square Root and Logarithm of Rotors
in 3D Conformal Geometric Algebra
Using Polar Decomposition
Leo Dorst and Robert Valkenburg

clifford.tools.g3c.n_th_rotor_root

	
clifford.tools.g3c.n_th_rotor_root(R, n)[source]

	Takes the n_th root of rotor R
n must be a power of 2

clifford.tools.g3c.interp_objects_root

	
clifford.tools.g3c.interp_objects_root(C1, C2, alpha)[source]

	Hadfield and Lasenby, Direct Linear Interpolation of Geometric Objects, AGACSE2018
Directly linearly interpolates conformal objects
Return a valid object from the addition result C

clifford.tools.g3c.general_object_interpolation

	
clifford.tools.g3c.general_object_interpolation(object_alpha_array, object_list, new_alpha_array, kind='linear')[source]

	Hadfield and Lasenby, Direct Linear Interpolation of Geometric Objects, AGACSE2018
This is a general interpolation through the

clifford.tools.g3c.average_objects

	
clifford.tools.g3c.average_objects(obj_list, weights=[], check_grades=True)[source]

	Hadfield and Lasenby, Direct Linear Interpolation of Geometric Objects, AGACSE2018
Directly averages conformal objects
Return a valid object from the addition result C

clifford.tools.g3c.val_average_objects_with_weights

	
clifford.tools.g3c.val_average_objects_with_weights(obj_array, weights_array)[source]

	Hadfield and Lasenby, Direct Linear Interpolation of Geometric Objects, AGACSE2018
Directly averages conformal objects
Return a valid object from the addition result C

clifford.tools.g3c.val_average_objects

	
clifford.tools.g3c.val_average_objects(obj_array)[source]

	Hadfield and Lasenby, Direct Linear Interpolation of Geometric Objects, AGACSE2018
Directly averages conformal objects
Return a valid object from the addition result C

clifford.tools.g3c.rotor_between_objects

	
clifford.tools.g3c.rotor_between_objects(X1, X2)[source]

	Lasenby and Hadfield AGACSE2018
For any two conformal objects X1 and X2 this returns a rotor that takes X1 to X2
Return a valid object from the addition result 1 + gamma*X2X1

clifford.tools.g3c.val_rotor_between_objects_root

	
clifford.tools.g3c.val_rotor_between_objects_root(X1, X2)[source]

	Lasenby and Hadfield AGACSE2018
For any two conformal objects X1 and X2 this returns a rotor that takes X1 to X2
Uses the square root of rotors for efficiency and numerical stability

clifford.tools.g3c.val_rotor_between_objects_explicit

	
clifford.tools.g3c.val_rotor_between_objects_explicit(X1, X2)[source]

	Lasenby and Hadfield AGACSE2018
For any two conformal objects X1 and X2 this returns a rotor that takes X1 to X2

Implements an optimised version of:

gamma1 = (X1 * X1)[0]
gamma2 = (X2 * X2)[0]

M12 = X1*X2 + X2*X1
K = 2 + gamma1*M12

if np.sum(np.abs(K.value)) < 0.0000001:
 return 1 + 0*e1

if sum(np.abs(M12(4).value)) > 0.0000001:
 lamb = (-(K(4) * K(4)))[0]
 mu = K[0]**2 + lamb
 root_mu = np.sqrt(mu)
 if abs(lamb) < 0.0000001:
 beta = 1.0/(2*np.sqrt(K[0]))
 else:
 beta_sqrd = 1/(2*(root_mu + K[0]))
 beta = np.sqrt(beta_sqrd)
 R = (beta*K(4) - (1/(2*beta)))*(1 + gamma1*X2*X1)/(root_mu)
 return R
else:
 return (1 + gamma1*X2*X1)/(np.sqrt(abs(K[0])))

clifford.tools.g3c.calculate_S_over_mu

	
clifford.tools.g3c.calculate_S_over_mu(X1, X2)[source]

	Lasenby and Hadfield AGACSE2018
For any two conformal objects X1 and X2 this returns a factor that corrects
the X1 + X2 back to a blade

clifford.tools.g3c.val_rotor_between_lines

	
clifford.tools.g3c.val_rotor_between_lines(L1_val, L2_val)[source]

	Implements a very optimised rotor line to line extraction

clifford.tools.g3c.rotor_between_lines

	
clifford.tools.g3c.rotor_between_lines(L1, L2)[source]

	return the rotor between two lines

clifford.tools.g3c.rotor_between_planes

	
clifford.tools.g3c.rotor_between_planes(P1, P2)[source]

	return the rotor between two planes

clifford.tools.g3c.val_rotor_rotor_between_planes

	
clifford.tools.g3c.val_rotor_rotor_between_planes(P1_val, P2_val)[source]

	return the rotor between two planes

clifford.tools.g3c.object_fitting

Tools for fitting geometric primitives to point clouds

Object Fitting

	fit_circle(point_list)

	Performs Leo Dorsts circle fitting technique

	val_fit_circle(point_list)

	Performs Leo Dorsts circle fitting technique

	fit_line(point_list)

	Does line fitting with combo J.Lasenbys method and L.

	val_fit_line(point_list)

	Does line fitting with combo J.Lasenbys method and L.

	fit_sphere(point_list)

	Performs Leo Dorsts sphere fitting technique

	val_fit_sphere(point_list)

	Performs Leo Dorsts sphere fitting technique

	fit_plane(point_list)

	Does plane fitting with combo J.Lasenbys method and L.

	val_fit_plane(point_list)

	Does plane fitting with combo J.Lasenbys method and L.

clifford.tools.classify

Tools for interpreting conformal blades

	
clifford.tools.classify.classify(x) → clifford.tools.classify.Blade[source]

	Classify a conformal multivector into a parameterized geometric description.

The multivector should be from a ConformalLayout, such
as the one returned by clifford.conformalize().

Implemented based on the approach described in table 14.1 of
Geometric Algebra for Computer Science (Revised Edition).

Example usage:

>>> from clifford.g3c import *

>>> classify(e1)
DualFlat[1](flat=Plane(direction=-(1.0^e23), location=0))

>>> classify(einf)
InfinitePoint(direction=1.0)

>>> classify(up(e1))
Point(direction=1.0, location=(1.0^e1))

>>> classify(up(3*e1)^up(4*e2))
PointPair(direction=-(3.0^e1) + (4.0^e2), location=(1.5^e1) + (2.0^e2), radius=2.5)

>>> classify(up(e1)^up(e2)^up(e1+2*e2))
Circle(direction=-(2.0^e12), location=(1.0^e1) + (1.0^e2), radius=1.0)

>>> classify(up(e1)^up(e2)^up(e1+2*e2)^einf)
Plane(direction=-(2.0^e12), location=0)

>>> classify(up(e1)^e2)
Tangent[2](direction=(1.0^e2), location=(1.0^e1))

how the inheritance works
>>> Point.mro()
[Point, Tangent[1], Round[1], Blade[1], Tangent, Round, Blade, object]

The reverse of this operation is Blade.mv.

The return type is a Blade:

	
class clifford.tools.classify.Blade(layout)[source]

	Base class for providing interpretation of blades.

Note that thanks to the unual metaclass, this class and its subclasses are
have grade-specific specializations, eg Blade[2] is a type for blades of
grade 2.

	
layout

	The layout to which this blade belongs

	Type

	Layout

	
property mv

	Convert this back into its GA representation

The subclasses below are the four categories to which all blades belong, where
\(E\) is a euclidean blade, and \(T_p[X]\) represents a translation of
the conformal blade \(X\) by the euclidean vector \(p\).

	
class clifford.tools.classify.Direction(direction)[source]

	\(En_\infty\)

	
direction

	The euclidean direction, \(E\)

	Type

	MultiVector

	
class clifford.tools.classify.Flat(direction, location)[source]

	\(T_p[n_o \wedge (En_\infty)]\)

	
direction

	The euclidean direction, \(E\)

	Type

	MultiVector

	
location

	The closest point on this flat to the origin, \(p\), as a euclidean
vector.

	Type

	MultiVector

	
class clifford.tools.classify.DualFlat(flat)[source]

	Dual of Flat

	
flat

	The flat this is the dual of

	Type

	Flat

	
class clifford.tools.classify.Round(direction, location, radius)[source]

	\(T_p[(n_o + \frac{1}{2}\rho^2 n_\infty)E]\)

	
direction

	The euclidean direction, \(E\)

	Type

	MultiVector

	
location

	The euclidean center, \(p\)

	Type

	MultiVector

	
radius

	The radius, \(\rho\), which may be imaginary

	Type

	float [https://docs.python.org/3/library/functions.html#float] or complex [https://docs.python.org/3/library/functions.html#complex]

These can be constructed directly, and will attempt to show a grade-specific
interpretation:

>>> from clifford.g3c import *
>>> Round(location=e1, direction=e1^e2, radius=1)
Circle(direction=(1^e12), location=(1^e1), radius=1)
>>> Round(direction=e1^e2^e3, location=e1, radius=1)
Sphere(direction=(1^e123), location=(1^e1), radius=1)

Aliased types

In addition, aliases are created for specific grades of the above types, with
more convenient names:

	
class clifford.tools.classify.Tangent(direction, location)[source]

	Bases: clifford.tools.classify.Round

A Round of radius 0, \(T_p[n_o E]\)

	
class clifford.tools.classify.Point(direction, location)[source]

	Bases: clifford.tools.classify.Tangent[1]

A conformal point, \(A\)

	
class clifford.tools.classify.PointFlat(direction, location)[source]

	Bases: clifford.tools.classify.Flat[2]

A flat point, \(A \wedge n_\infty\)

	
class clifford.tools.classify.Line(direction, location)[source]

	Bases: clifford.tools.classify.Flat[3]

A line, \(A \wedge B \wedge n_\infty\)

	
class clifford.tools.classify.Plane(direction, location)[source]

	Bases: clifford.tools.classify.Flat[4]

A line, \(A \wedge B \wedge C \wedge n_\infty\)

	
class clifford.tools.classify.PointPair(direction, location, radius)[source]

	Bases: clifford.tools.classify.Round[2]

A point pair, \(A \wedge B\)

	
class clifford.tools.classify.Circle(direction, location, radius)[source]

	Bases: clifford.tools.classify.Round[3]

A circle, \(A \wedge B \wedge C\)

	
class clifford.tools.classify.Sphere(direction, location, radius)[source]

	Bases: clifford.tools.classify.Round[4]

A sphere, \(A \wedge B \wedge C \wedge D\)

	
class clifford.tools.classify.InfinitePoint(direction)[source]

	Bases: clifford.tools.classify.Direction[1]

A scalar multiple of \(n_\infty\)

clifford.tools.orthoFrames2Versor

	
clifford.tools.orthoFrames2Versor(B, A=None, delta=0.001, eps=None, det=None, remove_scaling=False)[source]

	Determines versor for two frames related by an orthogonal transform

Based on [1,2]. This works in Euclidean spaces and, under special
circumstances in other signatures. see [1] for limitaions/details

	Parameters

	
	B (list of vectors, or clifford.Frame) – the set of vectors after the transform, and homogenzation.
ie B=(B/B|einf)

	A (list of vectors, or clifford.Frame) – the set of vectors before the transform. If None we assume A is
the basis given B.layout.basis_vectors_lst

	delta (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance for reflection/rotation determination. If the normalized
distance between A[i] and B[i] is larger than delta, we use
reflection, otherwise use rotation.

	eps (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance on spinor determination. if pseudoscalar of A differs
in magnitude from pseudoscalar of B by eps, then we have spinor.
If None, use the clifford.eps() global eps.

	det ([+1,-1,None [https://docs.python.org/3/library/constants.html#None]]) – The sign of the determinant of the versor, if known. If it is
known a-priori that the versor is a rotation vs a reflection, this
fact might be needed to correctly append an additional reflection
which leaves transformed points invariant. See 4.6.3 [2].

	remove_scaling (Bool) – Remove the effects of homogenzation from frame B. This is needed
if you are working in CGA, but the input data is given in the
original space. See omoh method for more. See 4.6.2 of [2]

	Returns

	
	R (clifford.Multivector) – the Versor.

	rs (list of clifford.Multivectors) – ordered list of found reflectors/rotors.

References

[1] http://ctz.dk/geometric-algebra/frames-to-versor-algorithm/

[2] Reconstructing Rotations and Rigid Body Motions from Exact Point
Correspondences Through Reflections, Daniel Fontijne and Leo Dorst

clifford.tools.orthoMat2Versor

	
clifford.tools.orthoMat2Versor(A, eps=None, layout=None, is_complex=None)[source]

	Translates an orthogonal (or unitary) matrix to a Versor

A is interpreted as the frame produced by transforming a
orthonormal frame by an orthogonal transform. Given this relation,
this function will find the versor which enacts this transform.

clifford.tools.mat2Frame

	
clifford.tools.mat2Frame(A, layout=None, is_complex=None)[source]

	Translates a (possibly complex) matrix into a real vector frame

	The rows and columns are interpreted as follows
	
	M,N = shape(A)

	M = dimension of space

	N = number of vectors

If A is complex M and N are doubled.

	Parameters

	A (ndarray) – MxN matrix representing vectors

operator functions (clifford.operator)

This module exists to enable functional programming via functools.reduce() [https://docs.python.org/3/library/functools.html#functools.reduce].
It can be thought of as equivalent to the builtin operator [https://docs.python.org/3/library/operator.html#module-operator] module, but for the operators from geometric algebra.

>>> import functools
>>> import clifford.operator
>>> from clifford.g3 import *
>>> Ms = [e1, e1 + e2, e2 + e3] # list of multivectors
>>> assert functools.reduce(clifford.operator.op, Ms) == Ms[0] ^ Ms[1] ^ Ms[2]

	
clifford.operator.gp(M, N)[source]

	Geometric product function \(MN\), equivalent to M * N.

M and N must be from the same layout

	
clifford.operator.op(M, N)[source]

	Outer product function \(M \wedge N\), equivalent to M ^ N.

M and N must be from the same layout

	
clifford.operator.ip(M, N)[source]

	Hestenes inner product function \(M \bullet N\), equivalent to M | N.

M and N must be from the same layout

Changed in version 1.3.0: These functions used to be in clifford, but have been moved to this
submodule.

transformations (clifford.transformations)

New in version 1.3.0.

This module may in future become the home for optimized rotor transformations,
or non-linear transformations.

See the Linear transformations tutorial for an
introduction to how to use parts of this module.

Base classes

	
clifford.transformations.Transformation = typing.Callable[[clifford._multivector.MultiVector], clifford._multivector.MultiVector]

	A callable mapping one MultiVector to another.

	
class clifford.transformations.Linear[source]

	A transformation which is linear, such that for scalar \(a_i\), \(f(a_1 x_1 + a_2 x_2) = a_1 f(x_1) + a_2 f(x_2)\).

	
class clifford.transformations.FixedLayout(layout_src: clifford._layout.Layout, layout_dst: clifford._layout.Layout = None)[source]

	A transformation with a fixed source and destination layout.

	Parameters

	
	layout_src (Layout of S dimensions) – The layout from which this transformation takes multivectors as input

	layout_dst (Layout of D dimensions) – The layout in which this transformation produces multivectors as output.
Defaults to the same as the input.

Matrix-backed implementations

	
class clifford.transformations.LinearMatrix(matrix, layout_src: clifford._layout.Layout, layout_dst: clifford._layout.Layout = None)[source]

	Linear transformation implemented by a matrix

Transformations need not be grade preserving.

	Parameters

	
	matrix ((2**D, 2**S) array_like) – A matrix that transforms multivectors from layout_src with
\(2^S\) elements to multivectors in layout_dst with \(2^D\)
elements, by left-multiplication.

	layout_src (Layout of S dimensions) – Passed on to FixedLayout.

	layout_dst (Layout of D dimensions) – Passed on to FixedLayout.

See also

	clifford.BladeMap
	A faster but less general approach that works on basis blades

	
property adjoint

	The adjoint transformation

	
classmethod from_function(func: Callable[[clifford._multivector.MultiVector], clifford._multivector.MultiVector], layout_src: clifford._layout.Layout, layout_dst: clifford._layout.Layout = None) → clifford.transformations.LinearMatrix[source]

	Build a linear transformation from the result of a function applied to each basis blade.

	Parameters

	
	func – A function taking basis blades from layout_src that produces
multivectors in layout_dst.

	layout_src (Layout of S dimensions) – The layout to pass into the generating function

	layout_dst (Layout of D dimensions) – The layout the generating function is expected to produce. If not
passed, this is inferred.

Example

>>> from clifford import transformations, Layout
>>> l = Layout([1, 1])
>>> e1, e2 = l.basis_vectors_lst
>>> rot_90 = transformations.LinearMatrix.from_function(lambda x: (1 + e1*e2)*x*(1 - e1*e2)/2, l)
>>> rot_90(e1)
(1.0^e2)
>>> rot_90(e2)
-(1.0^e1)
>>> rot_90(e1*e2)
(1.0^e12)

See also

	LinearMatrix.from_rotor()
	a shorter way to spell the above example

	clifford.linear_operator_as_matrix()
	a lower-level function for working with a subset of basis blades

	
classmethod from_rotor(rotor: clifford._multivector.MultiVector) → clifford.transformations.LinearMatrix[source]

	Build a linear transformation from the result of applying a rotor sandwich.

The resulting transformation operates within the algebra of the provided rotor.

	Parameters

	rotor – The rotor to apply

Example

>>> from clifford import transformations, Layout
>>> l = Layout([1, 1])
>>> e1, e2 = l.basis_vectors_lst
>>> rot_90 = transformations.LinearMatrix.from_rotor(1 + e1*e2)
>>> rot_90(e1)
(1.0^e2)
>>> rot_90(e2)
-(1.0^e1)
>>> rot_90(e1*e2)
(1.0^e12)

	
class clifford.transformations.OutermorphismMatrix(matrix, layout_src: clifford._layout.Layout, layout_dst: clifford._layout.Layout = None)[source]

	A generalization of a linear transformation to vectors via the outer product.

Namely, given a linear transformation \(F(u) \to v\), this generalizes
to the blades by outermorphism, \(F(u_1 \wedge u_2) \to F(u_1) \wedge F(u_2)\), and to
the multivectors by distributivity.

Such a transformation is grade preserving.

See GA4CS Chapter 4 for more information

	Parameters

	
	matrix ((D, S) array_like) – A matrix that transforms vectors from layout_src of size S to vectors
in layout_dst of size D by left-multiplication.

	layout_src (Layout of S dimensions) – Passed on to FixedLayout.

	layout_dst (Layout of D dimensions) – Passed on to FixedLayout.

Example

We can construct a simple transformation that permutes and non-uniformly
scales the basis vectors:

>>> from clifford import transformations, Layout
>>> layout = Layout([1, 1, 1])
>>> e1, e2, e3 = layout.basis_vectors_lst
>>> layout_new = Layout([1, 1, 1], names='f')
>>> m = np.array([[0, 1, 0],
... [0, 0, 2],
... [3, 0, 0]])
>>> lt = transformations.OutermorphismMatrix(m, layout, layout_new)

Applying it to some multivectors:

>>> # the transformation we specified
>>> lt(e1), lt(e2), lt(e3)
((3^f3), (1^f1), (2^f2))

>>> # the one deduced by outermorphism
>>> lt(e1^e2), lt(e2^e3), lt(e1^e3)
(-(3^f13), (2^f12), -(6^f23))

>>> # and by distributivity
>>> lt(1 + (e1^e2^e3))
1 + (6^f123)

Helper functions

	
clifford.transformations.between_basis_vectors(layout_src: clifford._layout.Layout, layout_dst: clifford._layout.Layout, mapping: Dict[Any, Any] = None) → clifford.transformations.OutermorphismMatrix[source]

	Construct an outermorphism that maps basis vectors from one layout to basis vectors in another.

	Parameters

	
	layout_src (Layout) – Passed on to FixedLayout.

	layout_dst (Layout) – Passed on to FixedLayout.

	mapping – If provided, a dictionary mapping the ids of source basis vectors
to the ids of destination basis vectors. For example,
{1: 2, 2: 3, 3: 1} would permute the basis vectors of
clifford.g3.

Example

See the tutorial on Working with custom algebras for a
motivating example.

Predefined Algebras

The easiest way to get started with clifford is to use one of several predefined algebras:

	g2: 2D Euclidean, Cl(2). See Quick Start (G2) for some examples.

	g3: 3D Euclidean, Cl(3). See The Algebra Of Space (G3) for some examples.

	g4: 4D Euclidean, Cl(4).

	g2c: Conformal space for G2, Cl(3, 1). See Conformal Geometric Algebra for some examples.

	g3c: Conformal space for G3, Cl(4, 1).

	pga: Projective space for G3 Cl(3, 0, 1).

	gac: Geometric Algebra for Conics, Cl(5, 3).

	dpga: Double PGA also referred to as the Mother Algebra, Cl(4, 4).

	dg3c: Double Conformal Geometric Algebra, effectively two g3c algebras glued together Cl(8, 2).

By using the pre-defined algebras in place of calling Cl directly, you will often find that your program starts up faster.

	
clifford.<predefined>.e<ijk>

	All of these modules expose the basis blades as attributes, and can be used like so

In [1]: from clifford import g2

In [2]: g2.e1 * g2.e2
Out[2]: (1^e12)

Additionally, they define the following attributes, which contain the return values of clifford.Cl():

	
clifford.<predefined>.layout

	The associated clifford.Layout

In [3]: g2.layout
Out[3]:
Layout([1, 1],
 ids=BasisVectorIds.ordered_integers(2),
 order=BasisBladeOrder.shortlex(2),
 names=['', 'e1', 'e2', 'e12'])

	
clifford.<predefined>.blades

	A shorthand for Layout.blades()

In [4]: g2.blades
Out[4]: {'': 1, 'e1': (1^e1), 'e2': (1^e2), 'e12': (1^e12)}

For interactive use, it’s very handy to use import *

In [5]: from clifford.g2 import *

In [6]: e1, e2, e12
Out[6]: ((1^e1), (1^e2), (1^e12))

For the conformal layouts g2c and g3c, the full contents of the stuff result of clifford.conformalize() is also exposed as members of the module.

Changelog

Changes in 1.3.x

	Python 3.8 is officially supported. 1.2.0 was pinned to a bad numba version
that was incompatible with 3.8.

	A new clifford.operator module to contain the previously undocumented
gp(), op(), and
ip() helpers.

	A new clifford.transformations module for linear transformations.

	Two new Predefined Algebras, clifford.dpga and clifford.dg3c.

	Improvements throughout the documentation:

	Better overall structure, visible in the docs sidebar.

	New tutorials for Conformal Geometric Algebra on visualization and applications.

	New tutorial on Working with custom algebras.

	New tutorial on Linear transformations.

	New [image: launch binder] links at the top of each notebook tutorial, to run
examples from the browser.

	Faster algebra construction. Cl(3) is now 100× faster, and
Cl(6) is 20× faster. This is achieved by deferring product JIT
compilation until the product is used for the first time.

	Additional testing and assorted improvements for clifford.tools.g3c:

	closest_point_on_circle_from_line() has now been implemented
roughly following the procedure described in Appendix A of
Andreas Aristidou’s PhD thesis [https://www.repository.cam.ac.uk/handle/1810/237554].

	closest_point_on_line_from_circle() has now also been added,
projecting the result of closest_point_on_circle_from_line()
to the line.

	clifford.ugly() now results in less ugly output for
Predefined Algebras.

Bugs fixed

	MultiVector.meet() no longer produces zero erroneously.

	mv[e1 + e12] now raises ValueError [https://docs.python.org/3/library/exceptions.html#ValueError], rather than being interpreted
as mv[e1].

	ip() (the inner product) no longer performs the
outer product.

	Layout.parse_multivector() now throws SyntaxError [https://docs.python.org/3/library/exceptions.html#SyntaxError] on invalid
input, rather than silenltly producing nonsense.

	Layout.parse_multivector() supports basis vector names which do not
start with e.

	In clifford.tools.g3c:

	val_midpoint_between_lines() now handles the case that
the two lines are touching.

	val_fit_circle() now correctly selects the first and
second eigenvalue regardless of order.

	sphere_beyond_plane() now tested and correct.

	sphere_behind_plane() now tested and correct.

	val_unsign_sphere() is now jitted, as it should have
been from the start.

	get_nearest_plane_point() correctly returns the conformal
point rather than the 3D point.

Compatibility notes

	clifford.grades_present is deprecated in favor of
MultiVector.grades(), the latter of which now takes an eps argument.

	del mv[i] is no longer legal, the equivalent mv[i] = 0 should be used instead.

	Layout.dict_to_multivector has been removed. It was accidentally broken
in 1.0.5, so there is little point deprecating it.

	Layout.basis_names() now returns a list of str, rather than a
numpy array of bytes. The result now matches the construction order, rather
than being sorted alphabetically. The order of Layout.metric() has
been adjusted for consistency.

	The imt_prod_mask, omt_prod_mask, and lcmt_prod_mask attributes
of Layout objects have been removed, as these were an unnecessary
intermediate computation that had no need to be public.

	Some functions in clifford.tools.g3c have been renamed:

	closest_points_on_circles has been renamed to
iterative_closest_points_on_circles().

	closest_points_circle_line has been renamed to
iterative_closest_points_circle_line().

	furthest_points_on_circles has been renamed to
iterative_furthest_points_on_circles().

	While this release is compatible with numba version 0.49.0, it is
recommended to use 0.48.0 which does not emit as many warnings. See the
Installation instructions for how to follow this guidance.

Patch releases

	1.3.1: Added compatibility with numba version 0.50.0.

Changes in 1.2.x

	layout.isconformal, layout.einf, and layout.eo, which were added
in 1.0.4, have been removed. The first can now be spelt
isinstance(layout, clifford.ConformalLayout), and the other properties
now exist only on ConformalLayout objects.

	MultiVector.left_complement() has been added for consistency with
MultiVector.right_complement().

	A new clifford.tools.classify module has been added for classifying
blades.

	Layout objects print slightly more cleanly in Jupyter notebooks.

	Layout.scalar is now integral rather than floating point

Bugs fixed

	pow(mv, 0) gives the right result

	nan is now printed correctly when it appears in multivectors. Previously it was hidden

	MultiVector.right_complement() no longer performs the left complement.

	MultiVector.vee() has been corrected to have the same sign as
MultiVector.meet()

Compatibility notes

	Layout.scalar is now integral rather than floating point, to match
Layout.pseudoScalar.

Changes in 1.1.x

	Restores layout.gmt, Layout.omt, Layout.imt, and Layout.lcmt.
A few releases ago, these existed but were dense.
For memory reasons, they were then removed entirely.
They have now been reinstated as sparse.COO [https://sparse.pydata.org/en/latest/generated/sparse.COO.html#sparse.COO] matrix objects, which
behave much the same as the original dense arrays.

	MultiVectors preserve their data type in addition, subtraction, and
products. This means that integers remain integers until combined with
floats. Note that this means in principle integer overflow is possible, so
working with floats is still recommended. This also adds support for floating
point types of other precision, such as np.float32.

	setup.py is now configured such that pip2 install clifford will not
attempt to download this version, since it does not work at all on python 2.

	Documentation now includes examples of pyganja visualizations.

Compatibility notes

	Layout.blades() now includes the scalar 1, as do other similar
functions.

	MultiVector.grades() now returns a set [https://docs.python.org/3/library/stdtypes.html#set] not a list [https://docs.python.org/3/library/stdtypes.html#list].
This means code like mv.grades() == [0] will need to change to
mv.grades() == {0}, or to work both before and after this change,
set(mv.grades()) == {0}.

Bugs fixed

	mv[(i, j)] would sometimes fail if the indices were not in canonical order.

	mv == None and layout == None would crash rather than return False.

	blade.isVersor() would return False.

	layout.blades_of_grade(0) would not return the list it claimed to return.

Internal changes

	Switch to pytest for testing.

	Enable code coverage.

	Split into smaller files.

	Remove python 2 compatibility code, which already no longer worked.

Changes 0.6-0.7

	Added a real license.

	Convert to NumPy instead of Numeric.

Changes 0.5-0.6

	join() and meet() actually work now, but have numerical accuracy problems

	added clean() to MultiVector

	added leftInv() and rightInv() to MultiVector

	moved pseudoScalar() and invPS() to MultiVector (so we can derive
new classes from MultiVector)

	changed all of the instances of creating a new MultiVector to create
an instance of self.__class__ for proper inheritance

	fixed bug in laInv()

	fixed the massive confusion about how dot() works

	added left-contraction

	fixed embarrassing bug in gmt generation

	added normal() and anticommutator() methods

	fixed dumb bug in elements() that limited it to 4 dimensions

Acknowledgements

Konrad Hinsen fixed a few bugs in the conversion to numpy and adding some unit
tests.

Issues

Warning

This document is kept for historic reasons, but may no longer reflect the current
state of the latest release of clifford.
For the most up to date source of issues, look at the GitHub issue tracker [https://github.com/pygae/clifford/issues].

	Currently, algebras over 6 dimensions are very slow. this is because
this module was written for pedagogical purposes. However, because the
syntax for this module is so attractive, we plan to fix the
performance problems, in the future…

	Due to Python’s order of operations [https://docs.python.org/3/reference/expressions.html#operator-summary], the bit operators ^ << |
are evaluated after the normal arithmetic operators + - * /,
which do not follow the precedence expected in GA

written meaning possibly intended
1^e1 + 2^e2 == 1^(e1+2)^e2 != (1^e0) + (2^e1)
e2 + e1|e2 == (e2 + e1)|e2 != e1 + (e1|e2)

This can also cause confusion within the bitwise operators:

written meaning possibly intended
e1 << e2 ^ e1 == (e1 << e2) ^ e1 != e1 << (e2 ^ e1)
e1 ^ e2 | e1 == (e1 << e2) ^ e1 != e1 << (e2 ^ e1)

	Since | is the inner product and the inner product with a scalar
vanishes by definition, an expression like:

(1|e0) + (2|e1)

is null. Use the outer product or full geometric product, to
multiply scalars with MultiVectors. This can cause problems if
one has code that mixes Python numbers and MultiVectors. If the
code multiplies two values that can each be either type without
checking, one can run into problems as 1 | 2 has a very different
result from the same multiplication with scalar MultiVectors.

	Taking the inverse of a MultiVector will use a method proposed by
Christian Perwass that involves the solution of a matrix equation.
A description of that method follows:

Representing multivectors as \(2^\text{dims}\)-vectors (in the matrix sense),
we can carry out the geometric product with a multiplication table.
In pseudo-tensorish language (using summation notation)

\[m_i g_{ijk} n_k = v_j\]

Suppose \(m_i\) are known (M is the vector we are taking the inverse of),
the \(g_{ijk}\) have been computed for this algebra, and \(v_j = 1\)
if the \(j\)’th element is the scalar element and 0 otherwise, we can compute the
dot product \(m_i g_{ijk}\). This yields a rank-2 matrix. We can
then use well-established computational linear algebra techniques
to solve this matrix equation for \(n_k\). The laInv method does precisely
that.

The usual, analytic, method for computing inverses (\(M^{-1} = \tilde M/(M \tilde M)\)
iff \(M\tilde M = {|M|}^2\)) fails for those multivectors where M*~M is not a scalar.
It is onl)y used if the inv method is manually set to point to normalInv.

My testing suggests that laInv works. In the cases where normalInv works,
laInv returns the same result (within _eps). In all cases,
M * M.laInv() == 1.0 (within _eps). Use whichever you feel comfortable
with.

Of course, a new issue arises with this method. The inverses found
are sometimes dependant on the order of multiplication. That is:

M.laInv() * M == 1.0
M * M.laInv() != 1.0

XXX Thus, there are two other methods defined, leftInv and rightInv which
point to leftLaInv and rightLaInv. The method inv points to rightInv.
Should the user choose, leftInv and rightInv will both point to normalInv,
which yields a left- and right-inverse that are the same should either exist
(the proof is fairly simple).

	The basis vectors of any algebra will be orthonormal unless you supply
your own multiplication tables (which you are free to do after the Layout
constructor is called). A derived class could be made to calculate these
tables for you (and include methods for generating reciprocal bases and the
like).

	No care is taken to preserve the dtype of the arrays. The purpose
of this module is pedagogical. If your application requires so many
multivectors that storage becomes important, the class structure here
is unsuitable for you anyways. Instead, use the algorithms from this
module and implement application-specific data structures.

	Conversely, explicit typecasting is rare. MultiVectors will have
integer coefficients if you instantiate them that way. Dividing them
by Python integers will have the same consequences as normal integer
division. Public outcry will convince me to add the explicit casts
if this becomes a problem.

Happy hacking!

Robert Kern

robert.kern@gmail.com

 This page was generated from
 docs/tutorials/g2-quick-start.ipynb.
 Interactive online version:
 [image: Binder badge]

 The Algebra Of Space (G3)

 This page was generated from
 docs/tutorials/g3-algebra-of-space.ipynb.
 Interactive online version:
 [image: Binder badge]

 Rotations in Space: Euler Angles, Matrices, and Quaternions

 This page was generated from
 docs/tutorials/euler-angles.ipynb.
 Interactive online version:
 [image: Binder badge]

 Space Time Algebra

 This page was generated from
 docs/tutorials/space-time-algebra.ipynb.
 Interactive online version:
 [image: Binder badge]

 Interfacing Other Mathematical Systems

 This page was generated from
 docs/tutorials/InterfacingOtherMathSystems.ipynb.
 Interactive online version:
 [image: Binder badge]

 Writing high(ish) performance code with Clifford and Numba via Numpy

 This page was generated from
 docs/tutorials/PerformanceCliffordTutorial.ipynb.
 Interactive online version:
 [image: Binder badge]

 Conformal Geometric Algebra

 This page was generated from
 docs/tutorials/cga/index.ipynb.
 Interactive online version:
 [image: Binder badge]

 Visualization tools

 This page was generated from
 docs/tutorials/cga/visualization-tools.ipynb.
 Interactive online version:
 [image: Binder badge]

 Object Oriented CGA

 This page was generated from
 docs/tutorials/cga/object-oriented.ipynb.
 Interactive online version:
 [image: Binder badge]

 Example 1 Interpolating Conformal Objects

 This page was generated from
 docs/tutorials/cga/interpolation.ipynb.
 Interactive online version:
 [image: Binder badge]

 Example 2 Clustering Geometric Objects

